The Ganj Complex reinterpreted as a Late Cretaceous volcanic arc: Implications for the geodynamic evolution of the North Makran domain (southeast Iran)

2020 ◽  
Vol 195 ◽  
pp. 104306 ◽  
Author(s):  
Edoardo Barbero ◽  
Morteza Delavari ◽  
Asghar Dolati ◽  
Emilio Saccani ◽  
Michele Marroni ◽  
...  
2016 ◽  
Vol 3 ◽  
pp. 229-291 ◽  
Author(s):  
Alan L. Titus ◽  
Jeffrey G. Eaton ◽  
Joseph Sertich

The Late Cretaceous succession of southern Utah was deposited in an active foreland basin circa 100 to 70 million years ago. Thick siliciclastic units represent a variety of marine, coastal, and alluvial plain environments, but are dominantly terrestrial, and also highly fossiliferous. Conditions for vertebrate fossil preservation appear to have optimized in alluvial plain settings more distant from the coast, and so in general the locus of good preservation of diverse assemblages shifts eastward through the Late Cretaceous. The Middle and Late Campanian record of the Paunsaugunt and Kaiparowits Plateau regions is especially good, exhibiting common soft tissue preservation, and comparable with that of the contemporaneous Judith River and Belly River Groups to the north. Collectively the Cenomanian through Campanian strata of southern Utah hold one of the most complete single region terrestrial vertebrate fossil records in the world.


2019 ◽  
Author(s):  
William A. Matthews ◽  
◽  
Marie-Pier Boivin ◽  
Kirsten Sauer ◽  
Daniel S. Coutts

1984 ◽  
Vol 121 (6) ◽  
pp. 577-587 ◽  
Author(s):  
P. E. R. Lovelock

AbstractThe structure of the northern part of the Arabian platform is reviewed in the light of hitherto unpublished exploration data and the presently accepted kinematic model of plate motion in the region. The Palmyra and Sinjar zones share a common history of development involving two stages of rifting, one in the Triassic–Jurassic and the other during late Cretaceous to early Tertiary times. Deformation of the Palmyra zone during the Mio-Pliocene is attributed to north–south compression on the eastern block of the Dead Sea transcurrent system which occurred after continental collision in the north in southeast Turkey. The asymmetry of the Palmyra zone is believed to result from northward underthrusting along the southern boundary facilitated by the presence of shallow Triassic evaporites. An important NW-SE cross-plate shear zone has been identified, which can be traced for 600 km and which controls the course of the River Euphrates over long distances in Syria and Iraq. Transcurrent motion along this zone resulted in the formation of narrow grabens during the late Cretaceous which were compressed during the Mio-Pliocene. To a large extent, present day structures in the region result from compressional reactivation of old lineaments within the Arabian plate by the transcurrent motion of the Dead Sea fault zone and subsequent continental collision.


2018 ◽  
Vol 156 (07) ◽  
pp. 1265-1284
Author(s):  
EVA VAN DER VOET ◽  
LEONORA HEIJNEN ◽  
JOHN J. G. REIJMER

AbstractIn contrast to the Norwegian and Danish sectors, where significant hydrocarbon reserves were found in chalk reservoirs, limited studies exist analysing the chalk evolution in the Dutch part of the North Sea. To provide a better understanding of this evolution, a tectono-sedimentary study of the Late Cretaceous to Early Palaeogene Chalk Group in the northern Dutch North Sea was performed, facilitated by a relatively new 3D seismic survey. Integrating seismic and biostratigraphic well data, seven chronostratigraphic units were mapped, allowing a reconstruction of intra-chalk geological events.The southwestward thickening of the Turonian sequence is interpreted to result from tilting, and the absence of Coniacian and Santonian sediments in the western part of the study area is probably the result of non-deposition. Seismic truncations show evidence of a widespread inversion phase, the timing of which differs between the structural elements. It started at the end of the Campanian followed by a second pulse during the Maastrichtian, a new finding not reported before. After subsidence during the Maastrichtian and Danian, renewed inversion and erosion occurred at the end of the Danian. Halokinesis processes resulted in thickness variations of chalk units of different ages.In summary, variations in sedimentation patterns in the northern Dutch North Sea relate to the Sub-Hercynian inversion phase during the Campanian and Maastrichtian, the Laramide inversion phase at the end of the Danian, and halokinesis processes. Additionally, the Late Cretaceous sea floor was characterized by erosion through contour bottom currents at different scales and resedimentation by slope failures.


2011 ◽  
Vol 103 (2) ◽  
pp. 305-315 ◽  
Author(s):  
EUGENIO ARAGÓN ◽  
FRANCISCO J. GOIN ◽  
YOLANDA E. AGUILERA ◽  
MICHAEL O. WOODBURNE ◽  
ALFREDO A. CARLINI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document