Interseismic fault slip deficit and coupling distributions on the Anninghe-Zemuhe-Daliangshan-Xiaojiang fault zone, Southeastern Tibeatan Plateau, based on GPS measurements

2021 ◽  
pp. 104899
Author(s):  
Yuhang Li ◽  
Ming Hao ◽  
Shangwu Song ◽  
Liangyu Zhu ◽  
Duxin Cui ◽  
...  
2007 ◽  
Vol 40 (4) ◽  
pp. 1586 ◽  
Author(s):  
N. Palyvos ◽  
D. Pantosti ◽  
L. Stamatopoulos ◽  
P. M. De Martini

In this communication we discuss reconnaissance geomorphological observations along the active Psathopyrgos and Rion-Patras (NE part) fault zones. These fault zones correspond to more or less complex rangefronts, the geomorphic characteristics of which provide hints on the details of the fault zone geometries, adding to the existing geological data in the bibliography. Aiming at the identification of locations suitable or potentially suitable for geomorphological and geological studies for the determination of fault slip rates in the Holocene, we describe cases of faulted Holocene landforms and associated surficial deposits. We also discuss problems involved in finding locations suitable for geological (paleoseismological) studies for the determination of the timing of recent earthquake ruptures, problems due to both man-made and natural causes.


2020 ◽  
Vol 110 (1) ◽  
pp. 154-165 ◽  
Author(s):  
Yuexin Li ◽  
Roland Bürgmann ◽  
Bin Zhao

ABSTRACT The Mw 6.5 Jiuzhaigou earthquake occurred on 8 August 2017 36 km west-southwest of Yongle, Sichuan, China. We use both ascending and descending Interferometric Synthetic Aperture Radar (InSAR) data from Sentinel-1 and coseismic offsets of four Global Positioning System sites to obtain the coseismic surface deformation field and invert for the fault geometry and slip distribution. Most slip of the left-lateral strike-slip earthquake occurred in the 3–10 km depth interval with a maximum slip of about 1 m and a large shallow slip deficit (SSD). An eight-month InSAR time-series analysis documents a lack of resolvable postseismic deformation, and inversions for the distribution of postseismic slip demonstrate the lack of shallow afterslip. We argue that the observations of a pronounced SSD and no early afterslip of the Jiuzhaigou earthquake are indicative of an immature fault and that all incipient young strike-slip faults likely feature a SSD. We would expect a complex rupture geometry with distributed coseismic failure in the uppermost part of the brittle crust during the fault-zone development. As faults mature, they straighten out, develop a localized fault-zone core, and the SSD diminishes. By calculating the static Coulomb stress change and nine-year viscoelastic stress change caused by the Wenchuan earthquake, we also show that the 2008 Wenchuan earthquake did not significantly affect the time of occurrence of the 2017 Jiuzhaigou earthquake.


2010 ◽  
Vol 37 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
GuangCai Feng ◽  
Eric A. Hetland ◽  
XiaoLi Ding ◽  
ZhiWei Li ◽  
Lei Zhang

2021 ◽  
Author(s):  
Yijian Zhou ◽  
Han Yue ◽  
Shiyong Zhou ◽  
Lihua Fang ◽  
Yun Zhou ◽  
...  

2008 ◽  
Vol 51 (9) ◽  
pp. 1248-1258 ◽  
Author(s):  
HongLin He ◽  
Yasutaka Ikeda ◽  
YuLin He ◽  
Masayoshi Togo ◽  
Jie Chen ◽  
...  

2020 ◽  
Author(s):  
Yijian Zhou ◽  
Shiyong Zhou ◽  
Hao Zhang ◽  
Yu Hou ◽  
Weilai Pei ◽  
...  

<p>Xiaojiang Fault (XJF) lies at the southeastern edge of the rhombic Sichuan-Yunnan block, and has an extent for over 400km from Qiaojia to Shanhua district. The Sichuan-Yunnan block experiences clockwise rotation and southwestward escaping from the Tibetan Plateau, producing complex fault geometry and seismicity pattern. The strong variation along fault segments provides a special opportunity to study the relationship between fault zone properties and seismicity pattern. However, the fine structure of XJF remains unknown due to the sparse observational stations.</p><p>Seismic data has its unique advantage of resolving fault zone properties at depth. We deployed 48 broad-band seismometers along XJF in order to capture detailed seismicity patterns. Our seismic network covers the northern and middle part of XJF, with an average aperture of 20km; the continuous observation from 2015 to 2019 guarantees enough data volume. We detected about 12,000 earthquakes by STA/LTA phase picking and association, and augmented the detection to over 50,000 events with template matching. The relocated catalog has lateral and vertical resolution of 500m and 1km, respectively; the magnitude of completeness (Mc) reaches ML0.3</p><p>This high-resolution catalog depicts detailed 3D fault geometry. The seismicity shows clustered lateral distribution, with the clusters’ depth extension ranging from 20km at northern to 35km at southern segments. Unmapped orthogonal faults on northern XJF are illuminated by seismicity, which matches orthogonal topography characteristics. Repeating events are detected from 8 seismicity clusters, under a threshold of 5 repeating families, indicating a creeping slip mode, while the separated low-seismicity segments exhibit a high locking rate. Taking advantage of the high detectability, we got reliable b-value estimation for different segments of XJF. The low-b regions correlate well with the margins of locking patches, which points to a high stress concentration. Velocity structure extracted from ambient noise and fault zone head wave present similar spatial variation, which further proved the seismicity pattern. The high heterogeneous characteristics of XJF may produce stress barriers, preventing future earthquake rupture from propagating to a large scale. </p>


Sign in / Sign up

Export Citation Format

Share Document