Deformation mechanisms of granulite-facies mafic shear zones from hole U1473A, Atlantis Bank, Southwest Indian Ridge (IODP Expedition 360)

2021 ◽  
pp. 104380
Author(s):  
Rhander Taufner ◽  
Gustavo Viegas ◽  
Frederico Meira Faleiros ◽  
Paulo Castellan ◽  
Raylline Silva
2021 ◽  
Author(s):  
Maël Allard ◽  
Benoît Ildefonse ◽  
Émilien Oliot

<p>The crustal architecture of slow-spread ocean crust results from complex interactions between magmatism, hydrothermalism, and tectonics. IODP Hole U1473A (809 m depth) was drilled during IODP Expeditions 360 and 362T at the summit of the Atlantis Bank, a gabbroic massif exhumed at the Southwest Indian Ridge (SWIR). In this study, we identify and quantify plastic deformation processes in oceanic gabbros and active slip-systems in plagioclase from 112 thin sections sampled throughout Hole U1473A.</p><p>We describe deformed zones using petrographic observations and modern Electron Backscattered Diffraction (EBSD) analyses made all along the core. Ductile deformation is widespread and is sometimes strongly localized. It initiated during accretion under magmatic conditions and continued until late brittle conditions. Porphyroclastic microstructures testify to post-magmatic, solid-state, high-temperature (HT) deformation. Plagioclase represents ~60% of rock’s volume and is the dominant phase accommodating deformation in the gabbro. It shows strong dynamic recrystallization accommodated by dislocation creep, forming a fine-grained matrix. Strain localizes in mylonitic and ultramylonitic zones, and these shear zones are often overprinted by lower temperature deformation.</p><p>EBSD analyses reveal weak to moderate crystallographic preferred orientations (CPO) of plagioclase first developed during early magmatic flow, that has produced a primary fabric with a (010) foliation plane and a [100] lineation axis. This CPO is persistent during subsequent plastic deformation and strain localization and is observed in almost all samples. However, a detailed investigation of internal misorientations measured at subgrains reveals the activity of at least 4 to 5 slip systems in plagioclase grains: <img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.ccc6371e5dff55120440161/sdaolpUECMynit/12UGE&app=m&a=0&c=6a9c8089187375ae30c9f8697f57bca5&ct=x&pn=gnp.elif&d=1" alt="">, and maybe <img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.effe7c6d5dff54400440161/sdaolpUECMynit/12UGE&app=m&a=0&c=33f8e61b26ba87bbb8acbd5b9e5556ab&ct=x&pn=gnp.elif&d=1" alt="">. The strength of CPO is first increasing from slightly foliated gabbros to mylonites before decreasing significantly in ultramylonites, which could be explained by orientation scattering after subgrain rotation recrystallization and grain boundary processes (e.g., nucleation, grain boundary sliding).</p>


2021 ◽  
Author(s):  
Rhander Taufner ◽  
Gustavo Viegas ◽  
Frederico Faleiros ◽  
Paulo Castellan ◽  
Raylline Silva

<p>Detachment faulting has been hypothesized as the main process of tectonic spreading in mid-ocean ridges. The ongoing faulting leads to exhumation of oceanic core complexes (OCC) through large-scale normal faults, exposing heterogeneous sectors of the mylonitic lower crust, locally interlayered with pristine upper-mantle rocks. However, the mechanisms involved in this process – and the interplay between magmatism, deformation and fluid-rock interaction – are still debatable. To address these issues, we performed a quantitative microstructural analysis and thermodynamic modelling on mafic shear zones that occur in the lower section (≥ 600 meters below sea-floor) of Site U1473A (Atlantis Bank OCC, SW Indian Ridge), the target of IODP Expedition 360, to constrain deformation conditions and strain localization mechanisms during detachment faulting. The gabbroic shear zones consist of large (up to 5 mm in size) porphyroclasts of clinopyroxene, orthopyroxene, plagioclase and olivine embedded in a fine-grained (≤ 30 µm), polyphase matrix composed of plagioclase, clinopyroxene, orthopyroxene, amphibole, ilmenite, magnetite and olivine. Plagioclase-rich layers (~ 80 µm) are in abrupt contact with the fine-grained mixture, which define the mylonitic foliation. The porphyroclasts have undulose extinction, subgrains and are surrounded by fine-grained recrystallized grains (core-mantle structure) showing internal lattice distortion. Microfractures are common in orthopyroxene porphyroclasts. Amphibole replaces clinopyroxene and orthopyroxene porphyroclasts at their margins and fills cleavage planes. The plagioclase-rich layers show undulose extinction and subgrain boundaries in the larger grains within the layers. Mechanical twin lamellae occur in some grains regardless of grain size. Plagioclase grains show a weak shape preferred orientation with their long axes parallel to the main planar fabric of the shear zone. The grains in the polyphase matrix are mostly strain free. EBSD data in clinopyroxene clasts indicate activation of (010)[001] slip system and twinning along (001)[100]. Plagioclase-rich layers deforms by slip along the (010)[100] system. The polyphase matrix has a very weak but non-random CPO pattern. #Mg and Al content in the recrystallized clinopyroxene and orthopyroxene grains are lower compared to the porphyroclasts. Plagioclase has similar An content in both porphyroclasts and recrystallized grains. Amphibole has low concentrations of Cl and high content of F. The content of #Mg, Al and Si is similar in amphibole grains replacing pyroxene and in the polyphase matrix. Thermodynamic modelling indicates that the gabbroic shear zones formed at 820-870 °C and 2.0-2.8 kbar. Our results suggest that deformation in the porphyroclasts was accommodated by combined mechanical fragmentation and intracrystalline plasticity, which resulted in fractured grains of orthopyroxene, and clasts rimmed by recrystallized neoblasts. Plagioclase-rich layers formed mainly through dislocation creep. Phase mixing and weak CPO in the polyphase matrix point to oriented-growth during diffusion-assisted grain boundary sliding, mainly in the presence of melt, as evidenced by amphibole formed at the expense of pyroxene. Magmatic fluids are the possible source of reactant amphibole. Such mechanisms effectively resulted in strain localization in fine-grained, polyphase shear zones that contributed to the weakening of the ocean crust during detachment faulting and subsequent exhumation of the Atlantis Bank OCC.</p>


2019 ◽  
Author(s):  
Mathieu Soret ◽  
Philippe Agard ◽  
Benoît Ildefonse ◽  
Benoît Dubacq ◽  
Cécile Prigent ◽  
...  

Abstract. This study sheds light on the deformation mechanisms of subducted mafic rocks metamorphosed at amphibolite and granulite facies conditions, and on their importance for strain accommodation and localization at the top of the slab during subduction infancy. These rocks, namely metamorphic soles, are oceanic slivers stripped from the downgoing slab and plastered below the upper plate mantle wedge during the first million years of intra-oceanic subduction, when the subduction interface is still warm. Their formation and intense deformation (i.e. shear strain ≥ 5) attest to a systematic and transient coupling between the plates over a restricted time span of ~1 My and specific rheological conditions. Combining micro-structural analyses with mineral chemistry constrains grain-scale deformation mechanisms and the rheology of amphibole and amphibolites along the plate interface during early subduction dynamics, as well as the interplay between brittle and ductile deformation, water activity, mineral change, grain size reduction and phase mixing. Results indicate, in particular, that increasing pressure-temperature conditions and slab dehydration (from amphibolite to granulite facies) lead to the crystallization of mechanically strong phases (garnet, clinopyroxene and high-grade amphibole) and rock hardening. In contrast, during early exhumation and cooling (from ~850 down to ~700 °C – 0.7 GPa), the garnet-clinopyroxene-bearing amphibolite experiences pervasive retrogression (and fluid ingression) and significant strain weakening essentially accommodated by dissolution-precipitation and grain boundary sliding processes. Observations also indicate cyclic brittle deformation near peak conditions and throughout the early exhumation, which contributed to fluid channelization within the amphibolites, and possibly strain localization accompanying detachment from the slab. These mechanical transitions, coeval with detachment and early exhumation of the HT metamorphic soles, controlled mechanical coupling across the plate interface during subduction infancy, between the top of the slab and the peridotites above. Our findings may thus apply to other geodynamic environments where similar temperatures, lithologies, fluid circulation and mechanical coupling between mafic rocks and peridotites prevail, such as in mature warm subduction zones (e.g., Nankai, Cascapedia), in lower continental crust shear zones and oceanic detachments.


2020 ◽  
Vol 8 ◽  
Author(s):  
Marine Boulanger ◽  
Lydéric France ◽  
Jeremy R.L. Deans ◽  
Carlotta Ferrando ◽  
C. Johan Lissenberg ◽  
...  

Author(s):  
Wei-Qi Zhang ◽  
Chuan-Zhou Liu ◽  
Henry J B Dick

Abstract The architecture of lower oceanic crust at slow- and ultraslow-spreading ridge is diverse, yet the mechanisms that produce this diversity are not well understood. Particularly, the 660-km2 gabbroic massif at Atlantis Bank (Southwest Indian Ridge) exhibits significant compositional zonation, representing a high magma supply end member for accretion of the lower ocean crust at slow and ultraslow-spreading ridges. We present the petrographic and geochemical data of olivine gabbros from the 809-metre IODP Hole U1473A at Atlantis Bank gabbroic massif. Structurally, the upper portion of U1473A consists of a ∼600-metre shear zone; below this, the hole is relatively undeformed, with several minor shear zones. Olivine gabbros away from the shear zones have mineral trace element compositions indicative of high-temperature reaction with an oxide-undersaturated melt. By contrast, olivine gabbros within shear zones display petrographic and chemical features indicative of reaction with a relatively low-temperature, oxide-saturated melt. These features indicate an early stage of primitive to moderately evolved melt migration, followed by deformation-driven transport of highly evolved Fe–Ti-rich melts to high levels in this gabbroic massif. The close relationship between shear zones and the reaction with oxide-saturated melts suggests that syn-magmatic shear zones provide a conduit for late-stage, Fe–Ti-rich melt transport through Atlantis Bank lower crust. This process is critical to generate the compositional zonation observed. Thus, the degree of syn-magmatic deformation, which is fundamentally related to magma supply, plays a dominant role in developing the diversity of lower ocean crust observed at slow- and ultraslow-spreading ridges.


Sign in / Sign up

Export Citation Format

Share Document