spreading center
Recently Published Documents


TOTAL DOCUMENTS

387
(FIVE YEARS 62)

H-INDEX

56
(FIVE YEARS 5)

Geology ◽  
2021 ◽  
Author(s):  
Zhonglan Liu ◽  
W. Roger Buck

The origin of horizontal magma-filled sills is disputed, particularly for extensional settings where the opening of vertical dikes is the predicted mode of magma intrusion. We simulate long-term extension followed by short-term dike opening in a two-dimensional viscoelastic medium representing a plate spreading center. We show that dike opening in extensionally stressed lithosphere can reduce sublithospheric vertical stresses enough for sill opening given three conditions: (1) the Maxwell time of the asthenosphere is <5× the time interval between dike episodes; (2) the average density of the lithosphere is not much greater than the magma density; and (3) the depth of an axial valley is smaller than a few hundred meters. This mechanism explains the presence of sills along much of the axis of faster-spreading ridges and their absence along slower-spreading centers where thick dense lithosphere and/or sizeable axial valleys exist.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Norikatsu Akizawa ◽  
Yasuhiko Ohara ◽  
Kyoko Okino ◽  
Osamu Ishizuka ◽  
Hiroyuki Yamashita ◽  
...  

AbstractThis paper explores the evolutional process of back-arc basin (BAB) magma system at final spreading stage of extinct BAB, Shikoku Basin (Philippine Sea) and assesses its tectonic evolution using a newly discovered oceanic core complex, the Mado Megamullion. Bulk and in-situ chemical compositions together with in-situ Pb isotope composition of dolerite, oxide gabbro, gabbro, olivine gabbro, dunite, and peridotite are presented. Compositional ranges and trends of the igneous and peridotitic rocks from the Mado Megamullion are similar to those from the slow- to ultraslow-spreading mid-ocean ridges (MOR). Since the timing of the Mado Megamullion exhumation corresponds to the very end of the Shikoku Basin opening, the magma supply was subdued and highly episodic, leading to extreme magma differentiation to form ferrobasaltic, hydrous magmas. In-situ Pb isotope composition of magmatic brown amphibole in the oxide gabbro is identical to that of depleted source mantle for mid-ocean ridge basalt (MORB). In the context of hydrous BAB magma genesis, the magmatic water was derived solely from the MORB source mantle. The distance from the back-arc spreading center to the arc front increased away through maturing of the Shikoku Basin to cause MORB-like magmatism. After the exhumation of Mado Megamullion along detachment faults, dolerite dikes intruded as a post-spreading magmatism. The final magmatism along with post-spreading Kinan Seamount Chain volcanism were introduced around the extinct back-arc spreading center after the opening of Shikoku Basin by residual mantle upwelling.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1277
Author(s):  
Zhengxin Yin ◽  
Weiping Wang ◽  
Liang Chen ◽  
Zhengyuan Li ◽  
Qiang Liu ◽  
...  

We present geological, bulk-rock geochemical and Sr–Nd–Hf isotopic data for mafic rocks from the West Philippine Basin (WPB). These mafic rocks comprise pillow basalts characterized by a vesicular structure. The mid-ocean ridge basalt (MORB)-normalized trace element patterns of basalts from the study area display depletions in Nb. In addition, the chondrite-normalized lanthanide patterns of basalts from the WPB are characterized by significant depletions in the light lanthanides and nearly flat Eu to Lu segments. The investigated rocks have initial 87Sr/86Sr ratios (87Sr/86Sr(i)) of 0.703339–0.703455 and high εNd(t) values (8.0 to 8.7). Furthermore, basalts from the WPB have 176Hf/177Hf ratios that range from 0.28318 to 0.28321 and high εHf(t) from 15.2 to 16.3. Semi-quantitative modeling demonstrates that the parental melts of basalts from the study area were derived by ~20% adiabatic decompression melting of a rising spinel-bearing peridotite source. The Sr–Nd–Hf isotopic compositions of basalts from the WPB indicate that their parental magmas were derived from an upper mantle reservoir possessing the so-called Indian-type isotopic anomaly. Interpretation of the isotopic data suggests that the inferred mantle source was most likely influenced by minor inputs of a sediment melt derived from a downgoing lithospheric slab. Collectively, the petrographic and geochemical characteristics of basalts from the study area are analogous to those of mafic rocks with a back-arc basin (BAB)-like affinity. As such, the petrogenesis of basalts from the WPB can be linked to upwelling of an Indian-type mantle source due to lithospheric slab subduction that was followed by back-arc spreading.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi-Ching Yeh ◽  
Jing-Yi Lin ◽  
Shu-Kun Hsu ◽  
Ching-Hui Tsai ◽  
Ching-Min Chang

AbstractThe West Philippine Basin (WPB) has started opening at ~ 58 Ma and ceased spreading at ~ 33 Ma, developing a fast spreading (~ 44 mm/yr half-spreading rate) magmatic episode between 58 and 41 Ma and the second amagmatic episode between 41 and 33 Ma. The occurrence of the first stage of spreading is closely related to the Oki-Daito mantle plume and related Benham Rise (BR) and Urdaneta Plateau (UP) activity. To the east of the Luzon–Okinawa Fracture Zone (LOFZ), BR was the most active volcanism from 48 to 41 Ma. The geomagnetic ages on both sides of the LOFZ have been determined; however, their causal relationship and evolution in the WPB remain unclear. In this study, we performed integrated analyses of multichannel seismic data and swath bathymetry data for the area to the west of the LOFZ. To the west of the LOFZ, the Gagua Rise (GR), is identified by a high residual free-air gravity anomaly, volcanic seamount chains and an overlapping spreading center. The GR is located at magnetic isochrons C20/C22 (50 to 44 Ma) and shows a thick oceanic crust of at least 12.7 km. We first propose an oceanic plateau named Great Benham Rise (GBR) which includes GR, UP and BR. We infer that the GR was a portion of the GBR since ~ 49 Ma and was separated from the GBR at ~ 41 Ma by the right-lateral LOFZ motion. Later, the relict GBR magmatism only continued in the area to the east of the LOFZ. Overall, the GBR dominates the spreading history of the WPB.


2021 ◽  
Vol 18 (19) ◽  
pp. 5397-5422
Author(s):  
Natalie R. Cohen ◽  
Abigail E. Noble ◽  
Dawn M. Moran ◽  
Matthew R. McIlvin ◽  
Tyler J. Goepfert ◽  
...  

Abstract. Bioactive trace metals are critical micronutrients for marine microorganisms due to their role in mediating biological redox reactions, and complex biogeochemical processes control their distributions. Hydrothermal vents may represent an important source of metals to microorganisms, especially those inhabiting low-iron waters, such as in the southwest Pacific Ocean. Previous measurements of primordial 3He indicate a significant hydrothermal source originating in the northeastern (NE) Lau Basin, with the plume advecting into the southwest Pacific Ocean at 1500–2000 m depth (Lupton et al., 2004). Studies investigating the long-range transport of trace metals associated with such dispersing plumes are rare, and the biogeochemical impacts on local microbial physiology have not yet been described. Here we quantified dissolved metals and assessed microbial metaproteomes across a transect spanning the tropical and equatorial Pacific with a focus on the hydrothermally active NE Lau Basin and report elevated iron and manganese concentrations across 441 km of the southwest Pacific. The most intense signal was detected near the Mangatolo Triple Junction (MTJ) and Northeast Lau Spreading Center (NELSC), in close proximity to the previously reported 3He signature. Protein content in distal-plume-influenced seawater, which was high in metals, was overall similar to background locations, though key prokaryotic proteins involved in metal and organic uptake, protein degradation, and chemoautotrophy were abundant compared to deep waters outside of the distal plume. Our results demonstrate that trace metals derived from the NE Lau Basin are transported over appreciable distances into the southwest Pacific Ocean and that bioactive chemical resources released from submarine vent systems are utilized by surrounding deep-sea microbes, influencing both their physiology and their contributions to ocean biogeochemical cycling.


Geology ◽  
2021 ◽  
Author(s):  
Nicholas Schliffke ◽  
Jeroen van Hunen ◽  
Frédéric Gueydan ◽  
Valentina Magni ◽  
Mark B. Allen

Continental collisions commonly involve highly curved passive plate margins, leading to diachronous continental subduction during trench rollback. Such systems may feature back-arc extension and ophiolite obduction postdating initial collision. Modern examples include the Alboran and Banda arcs. Ancient systems include the Newfoundland and Norwegian Caledonides. While external forces or preexisting weaknesses are often invoked, we suggest that ophiolite obduction can equally be caused by internal stress buildup during collision. Here, we modeled collision with an irregular subducting continental margin in three-dimensional (3-D) thermo-mechanical models and used the generated stress field evolution to understand resulting geologic processes. Results show how tensional stresses are localized in the overriding plate during the diachronous onset of collision. These stresses thin the overriding plate and may open a back-arc spreading center. Collision along the entire trench follows rapidly, with inversion of this spreading center, ophiolite obduction, and compression in the overriding plate. The models show how subduction of an irregular continental margin can form a highly curved orogenic belt. With this mechanism, obduction of back-arc oceanic lithosphere naturally evolves from a given initial margin geometry during continental collision.


Geosphere ◽  
2021 ◽  
Author(s):  
Jonathan D. Sleeper ◽  
Fernando Martinez ◽  
Patricia Fryer ◽  
Robert J. Stern ◽  
Katherine A. Kelley ◽  
...  

South of the latitude of Guam, the Mariana Trough exhibits both trench-parallel and trench-normal extension. In this study, we examined the locus of trench-normal extension separating the Philippine Sea plate from the broadly deforming Mariana platelet. Along this boundary, we identified three distinct modes of extension and described their distinguishing characteristics using deep- and shallow-towed side-scan sonar and ship multibeam data along with regional geophysical, geochemical, and seismicity data. In the west, the Southwest Mariana Rift is an active tectonic rift exhibiting abundant strong earthquakes up to mb 6.7 and limited evidence of volcanism. In the east, the Malaguana-Gadao Ridge is a seafloor spreading center producing few and weak earthquakes less than mb 5. Between these zones, there is an ~20–40-km-wide and ~120-km-long area of high acoustic backscatter characterized by closely spaced volcano- tectonic ridges and small volcanic cones with distributed intermediate-strength seismicity up to mb 5.7. Fresh-looking volcanic rocks with high water contents and strong arc chemical affinities have been recovered from the high-backscatter zone. We interpret this morphologically and geophysically distinct zone as undergoing diffuse spreading, a distributed form of magmatic crustal accretion where new crust forms within a broad zone tens of kilometers across rather than along a narrow spreading axis. Diffuse spreading appears to be a rheological threshold effect enabled by slow opening rates and a high slab-fluid flux that facilitate the formation of a broad zone of weak hydrous lithosphere, within which new crust is accreted. Our findings describe a poorly understood process in plate tectonics, and observations of similar terrains in other backarc basins suggest that this process is not unique to the Mariana Trough.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 769
Author(s):  
Quanshu Yan ◽  
Zhenmin Ge

The Cocos Ridge, which is subducted beneath the Central American Volcanic Arc, has a complex tectonic evolution history due to plume-ridge interaction between the Galápagos plume and the Cocos—Nazca spreading center. This study presents major and trace element analyses of plagioclase and clinopyroxenes hosted by Cocos Ridge basaltic rocks that were drilled in three holes (U1381A, U1381C and U1414A) of Sites U1381 and U1414 on the Cocos Ridge close to the Middle America Trench during the Integrated Ocean Drilling Program (IODP) Expeditions 334 and 344. The results show that (1) plagioclases are mainly bytownite and labradorite with subordinate andesine, which are enriched in light rare earth elements (LREE) and some large-ion lithophile elements (LILE) and exhibit marked positive Eu anomalies; and (2) that clinopyroxenes are augites, which are depleted in highly incompatible elements such as LREE and LILE, have nearly flat heavy rare earth elements patterns (HREE) and lack Eu anomalies in chondrite-normalized rare earth element (REE) diagrams. During the ascent to the surface, the primary magmas experienced fractional crystallization of plagioclase, clinopyroxene, Ti-Fe oxides and possibly olivine (complete replacement of olivine by secondary minerals). The crystallization temperatures of plagioclase phenocrysts and microlites are 1050 to 1269 °C, and 866 to 1038 °C, respectively, and the pressures of plagioclase phenocrysts are 0.3–0.7 GPa. The crystallization temperatures of clinopyroxene phenocrysts/micro-phenocrysts is 1174–1268 °C, similar to those of plagioclase phenocrysts, suggesting some of clinopyroxene and plagioclase phenocrysts cotectic crystallized during early stage of magmatic evolution. In addition, the equilibrium pressures of clinopyroxene phenocrysts/micro phenocrysts are 0.02–0.97 GPa, implying that the clinopyroxene started to crystallize within the mantle, and magma evolution has undergone an early crystallization stage with clinopyroxene and no plagioclase.


2021 ◽  
pp. 229001
Author(s):  
Carlotta Ferrando ◽  
Valentin Basch ◽  
Benoit Ildefonse ◽  
Jeremy Deans ◽  
Alessio Sanfilippo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document