spreading ridges
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 36)

H-INDEX

46
(FIVE YEARS 3)

Geology ◽  
2021 ◽  
Author(s):  
Zhonglan Liu ◽  
W. Roger Buck

The origin of horizontal magma-filled sills is disputed, particularly for extensional settings where the opening of vertical dikes is the predicted mode of magma intrusion. We simulate long-term extension followed by short-term dike opening in a two-dimensional viscoelastic medium representing a plate spreading center. We show that dike opening in extensionally stressed lithosphere can reduce sublithospheric vertical stresses enough for sill opening given three conditions: (1) the Maxwell time of the asthenosphere is <5× the time interval between dike episodes; (2) the average density of the lithosphere is not much greater than the magma density; and (3) the depth of an axial valley is smaller than a few hundred meters. This mechanism explains the presence of sills along much of the axis of faster-spreading ridges and their absence along slower-spreading centers where thick dense lithosphere and/or sizeable axial valleys exist.


2021 ◽  
Author(s):  
Lars Rüpke ◽  
Zhikui Guo ◽  
Sven Petersen ◽  
Christopher German ◽  
Benoit Ildefonse ◽  
...  

Abstract Submarine massive sulfide deposits on slow-spreading ridges are larger and longer-lived than deposits at fast-spreading ridges1,2, likely due to more pronounced tectonic faulting creating stable preferential fluid pathways3,4. The TAG hydrothermal mound at 26°N on the Mid-Atlantic Ridge (MAR) is a typical example located on the hanging wall of a detachment fault5-7. It has formed through distinct phases of high-temperature fluid discharge lasting 10s to 100s of years throughout at least the last 50,000 years8 and is one of the largest sulfide accumulations on the MAR. Yet, the mechanisms that control the episodic behavior, keep the fluid pathways intact, and sustain the observed high heat fluxes of up to 1800 MW9 remain poorly understood. Previous concepts involved long-distance channelized high-temperature fluid upflow along the detachment5,10 but that circulation mode is thermodynamically unfavorable11 and incompatible with TAG's high discharge fluxes. Here, based on the joint interpretation of hydrothermal flow observations and 3-D flow modeling, we show that the TAG system can be explained by episodic magmatic intrusions into the footwall of a highly permeable detachment surface. These intrusions drive episodes of hydrothermal activity with sub-vertical discharge and recharge along the detachment. This revised flow regime reconciles problematic aspects of previously inferred circulation patterns and can be used as guidance to one critical combination of parameters that can generate substantive mineral systems.


2021 ◽  
Vol 576 ◽  
pp. 117202
Author(s):  
C. Gini ◽  
J. Escartín ◽  
M. Cannat ◽  
T. Barreyre

2021 ◽  
pp. 229148
Author(s):  
David Jousselin ◽  
Adolphe Nicolas ◽  
Françoise Boudier ◽  
Laurie Reisberg ◽  
Mathilde Henri ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Boris Marcaillou ◽  
Frauke Klingelhoefer ◽  
Muriel Laurencin ◽  
Jean-Frédéric Lebrun ◽  
Mireille Laigle ◽  
...  

AbstractOceanic crust formed at slow-spreading ridges is currently subducted in only a few places on Earth and the tectonic and seismogenic imprint of the slow-spreading process is poorly understood. Here we present seismic and bathymetric data from the Northeastern Lesser Antilles Subduction Zone where thick sediments enable seismic imaging to greater depths than in the ocean basins. This dataset highlights a pervasive tectonic fabric characterized by closely spaced sequences of convex-up Ridgeward-Dipping Reflectors, which extend down to about 15 km depth with a 15-to-40° angle. We interpret these reflectors as discrete shear planes formed during the early stages of exhumation of magma-poor mantle rocks at an inside corner of a Mid-Atlantic Ridge fracture zone. Closer to the trench, plate bending could have reactivated this tectonic fabric and enabled deep fluid circulation and serpentinization of the basement rocks. This weak serpentinized basement likely explains the very low interplate seismic activity associated with the Barbuda-Anegada margin segment above.


2021 ◽  
Author(s):  
Hany Khalil ◽  
Fabio Capitanio ◽  
Alexander Cruden

Divergent triple junctions are stable plate margins where three spreading ridges meet. Although it is accepted that this configuration is inherited from an earlier phase of continental rifting, how post-breakup triple junctions emerge from the separation of two plates remains unclear. By documenting the strain rate history recorded in the three rift-arms of several modern and ancient triple junctions, we show that deformation is episodic and localized in only one or two rifts at any given time. We further investigate this behavior in three-dimensional (3D) analog experiments of rifting, under a range of kinematic boundary conditions and containing a variety of pre-existing lithospheric heterogeneities. Deformation in the experiments is characterized by strain jumps and rift abandonment, comparable to natural observations. Boundary rotation during extension induces oblique stretching directions, along-strike strain gradients and forces significant strain jump to reduce the number of rifts segments active. Models that comprise lithospheres ranging from homogenous to containing a triple junction-like pre-existing heterogeneities, never developed a three-armed rift, where all rift segments are active at same time, at any stage. Our experimental results indicate that, unlike mature, successful, and stable oceanic triple junctions, early-stage continental rifting progresses through unstable “double-junctions” characterized by repeated strain jumps and rift failures and reactivations.


2021 ◽  
Vol 9 (8) ◽  
pp. 825
Author(s):  
Dong Chen ◽  
Chunhui Tao ◽  
Yuan Wang ◽  
Sheng Chen ◽  
Jin Liang ◽  
...  

Non-transform discontinuity (NTD) is one category of tectonic units along slow- and ultraslow-spreading ridges. Some NTD-related hydrothermal fields that may reflect different driving mechanisms have been documented along slow-spreading ridges, but the discrete survey strategy makes it hard to evaluate the incidence of hydrothermal activity. On ultraslow-spreading ridges, fewer NTD-related hydrothermal activities were reported. Factors contributing to the occurrence of hydrothermal activities at NTDs and whether they could be potential targets for hydrothermal exploration are poorly known. Combining turbidity and oxidation reduction potential (ORP) sensors with a near-bottom camera, Chinese Dayang cruises from 2014 to 2018 have conducted systematic towed surveys for hydrothermal activity around a large NTD along the ultraslow-spreading Southwest Indian Ridge (SWIR, 48.1–48.7° E). Five new potential hydrothermal anomaly sites (2 inferred and 3 suspected) of high or low temperature and the previously inferred Sudi hydrothermal field occurred in diverse morphotectonic settings along a 78 km long ridge axis. The calculated vent frequency (Fs, sites/100 km) was ~7.7 over the entire study area, higher than the modified value (Fs ≈ 6.5) between 48 and 52° E of SWIR. Even only for the 54 km long large NTD, three hydrothermal anomaly sites yielded an Fs of ~5.6, which is higher than that of most ridge sections and is comparable to some fast-spreading ridges with high-resolution surveys. This indicates that NTDs along ultraslow-spreading ridges could be promising areas in fertilizing hydrothermal activities. Moreover, the deeply penetrating faults on the rift valley walls and strain-focused areas may contribute to the formation of NTD-related hydrothermal circulations. We suggest that NTDs along ultraslow-spreading ridges may be potential targets for further exploration of hydrothermal activities and seafloor sulfide deposits.


Author(s):  
Chuan-Zhou Liu ◽  
Fu-Yuan Wu ◽  
Tong Liu ◽  
Chang Zhang ◽  
Wei-Qi Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wilfried Jokat ◽  
Tabea Altenbernd ◽  
Graeme Eagles ◽  
Wolfram H. Geissler

AbstractPlate kinematic models propose that India and Sri Lanka (INDSRI) separated from Antarctica by extremely slow seafloor spreading that started in early Cretaceous times, and that a long-distance ridge jump left a continental fragment stranded off the Antarctic margin under the Southern Kerguelen Plateau 1-3. Here, we present newly acquired magnetic and deep wide-angle seismic data that require a fundamental re-evaluation of these concepts. The new data clearly define the onset of oceanic crust in the Enderby Basin and off southern Sri Lanka, and date its formation with unprecedented confidence. The revised timing indicates that India and Sri Lanka detached from Antarctica earlier in the east than in the west. Furthermore, no compelling evidence for an extinct spreading axis is found in the Enderby Basin. A refined plate motion model indicates that India and Sri Lanka departed from Antarctica without major rift jumps, but by the action of three spreading ridges with different timings and velocities that must have been accommodated by significant intracontinental deformation.


Sign in / Sign up

Export Citation Format

Share Document