Central composite designs for estimating the optimum conditions for a second-order model

2011 ◽  
Vol 141 (5) ◽  
pp. 1764-1773 ◽  
Author(s):  
R.L.J. Coetzer ◽  
L.M. Haines ◽  
L.P. Fatti
Author(s):  
Robert C. Williges

Simplified formulae for determining the coded value of α are presentedfor rotatable, blocked orthogonal second–order designs in which all data points are replicated an equal number of times. These three central–composite design parameters are compared, and the advantages and limitations of orthogonal designs are presented.


2016 ◽  
Vol 8 (4) ◽  
pp. 40
Author(s):  
Iwundu M. P.

<p>Useful numerical evaluations associated with three categories of Response Surface Methodology designs are presented with respect to five commonly encountered alphabetic optimality criteria. The first-order Plackett-Burman designs and the  Factorial designs are examined for the main effects models and the complete first-order models respectively. The second-order Central Composite Designs are examined for second-order models. The A-, D-, E-, G- and T-optimality criteria are employed as commonly encountered optimality criteria summarizing how good the experimental designs are. Relationships among the optimality criteria are pointed out with regards to the designs and the models. Generally the designs do not show uniform preferences in terms of the considered optimality criteria. However, one interesting finding is that central composite designs defined on cubes and hypercubes with unit axial distances are uniformly preferred in terms of E-optimality and G-optimality criteria.</p>


2016 ◽  
Vol 5 (4) ◽  
pp. 22
Author(s):  
Mary Paschal Iwundu

The equiradial designs are studied as alternative second-order N-point spherical Response Surface Methodology designs in two variables, for design radius ρ = 1.0. These designs are seen comparable with the standard second-order response surface methodology designs, namely the Central Composite Designs. The D-efficiencies of the equiradial designs are evaluated with respect to the spherical Central Composite Designs. Furthermore, D-efficiencies of the equiradial designs are evaluated with respect to the D-optimal exact designs defined on the design regions of the Circumscribed Central Composite Design, the Inscribed Central Composite Design and the Face-centered Central Composite Design. The D-efficiency values reveal that the alternative second-order N-point spherical equiradial designs are better than the Inscribed Central Composite Design though inferior to the Circumscribed Central Composite Design with efficiency values less than 50% in all cases studied. Also, D-efficiency values reveal that the alternative second-order N-point spherical equiradial designs are better than the N-point D-optimal exact designs defined on the design region supported by the design points of the Inscribed Central Composite Design. However, the N-point spherical equiradial designs are inferior to the N-point D-optimal exact designs defined on the design region supported by the design points of the Circumscribed Central Composite Design and those of the Face-centered Central Composite Design, with worse cases with respect to the design region of the Circumscribed Central Composite Design.


Author(s):  
P. Chiranjeevi ◽  
K. John Benhur ◽  
B. Re. Victor Babu

Kim [1] introduced rotatable central composite designs of second type with two replications of axial points for 2≤v≤8 (v: number of factors). In this paper we have extended the work of Kim [1] for second order rotatable designs of second type using central composite designs for 9≤v≤17.


2012 ◽  
Vol 524-527 ◽  
pp. 2306-2309
Author(s):  
Guang Lei Li ◽  
Su Juan Du ◽  
Jie Zeng

The preparation of sweet potato distarch phosphates which possess low digestibility was optimized in this study. A central composite design of response surface methodology involving STMP concentration, pH, phosphorylation temperature and time was used, and second-order model for starch digestibility was employed to generate the response surface. The optimum condition for preparation of sweet potato distarch phosphates was as follows: STMP concentration 3%, pH 10, phosphorylation temperature 40°C, and phosphorylation time 3h. The starch digestibility of sweet potato distarch phosphates was yield of 0.5508±0.0003 (n=3) under these conditions.


Sign in / Sign up

Export Citation Format

Share Document