scholarly journals Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics

2013 ◽  
Vol 21 (2) ◽  
pp. 201-213 ◽  
Author(s):  
Anirbandeep Bose ◽  
Tin Wui Wong ◽  
Navjot Singh
2007 ◽  
Vol 127 (8) ◽  
pp. 1281-1290 ◽  
Author(s):  
Uttam MANDAL ◽  
Veeran GOWDA ◽  
Animesh GHOSH ◽  
Senthamil SELVAN ◽  
Sam SOLOMON ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5418 ◽  
Author(s):  
Xiangchun Ruan ◽  
Xiuge Gao ◽  
Ying Gao ◽  
Lin Peng ◽  
Hui Ji ◽  
...  

Sustained-release formulations of ivermectin (IVM) are useful for controlling parasitic diseases in animals. In this work, an IVM bolus made from microcrystalline cellulose (MCC), starch and low-substituted hydroxypropyl cellulose (LS-HPC) was optimized by response surface methodology. The bolus was dissolved in a cup containing 900 mL of dissolution medium at 39.5 °C, under with stirring at 100 rpm. A quadratic model was formulated using analysis of variance according to the dissolution time. The optimized formulation of the bolus contained 8% MCC, 0.5% starch, and 0.25% LS-HPC. The length, width, and height of the prepared IVM bolus were 28.12 ± 0.14, 16.1 ± 0.13, and 13.03 ± 0.05 mm, respectively. The bolus weighed 11.4842 ± 0.1675 g (with a density of 1.95 g/cm3) and contained 458.26 ± 6.68 mg of IVM. It exhibited in vitro sustained-release for over 60 days, with a cumulative amount and percentage of released IVM of 423.72 ± 5.48 mg and 92.52 ± 1.20%, respectively. The Korsmeyer–Peppas model provided the best fit to the dissolution release kinetics, exhibiting anR2value close to 1 and the lowest Akaike Information Criterion among different models. The parametern(0.5180) of the Korsmeyer–Peppas model was between 0.45 and 0.89. It was demonstrated that the release mechanism of the IVM bolus followed a diffusive erosion style.


2012 ◽  
Vol 48 (4) ◽  
pp. 621-628 ◽  
Author(s):  
Shahid Sarwar ◽  
Mohammad Salim Hossain

The present study was undertaken to develop sustained release (SR) matrix tablets of losartan potassium, an angiotensin-II antagonist for the treatment of hypertension. The tablets were prepared by direct compression method, along with Kollidon SR as release retardant polymer. The amount of losartan potassium remains fixed (100 mg) for all the three formulations whereas the amounts of Kollidon SR were 250 mg, 225 mg, and 200 mg for F-1, F-2, and F-3 respectively. The evaluation involves three stages: the micromeritic properties evaluation of granules, physical property studies of tablets, and in-vitro release kinetics studies. The USP apparatus type II was selected to perform the dissolution test, and the dissolution medium was 900 mL phosphate buffer pH 6.8. The test was carried out at 75 rpm, and the temperature was maintained at 37 ºC ± 0.5 ºC. The release kinetics was analyzed using several kinetics models. Higher polymeric content in the matrix decreased the release rate of drug. At lower polymeric level, the rate and extent of drug release were enhanced. All the formulations followed Higuchi release kinetics where the Regression co-efficient (R²) values are 0.958, 0.944, and 0.920 for F-1, F-2, and F-3 respectively, and they exhibited diffusion dominated drug release. Statistically significant (P<0.05) differences were found among the drug release profile from different level of polymeric matrices. The release mechanism changed from non-fickian (n=0.489 for F-1) to fickian (n=0.439 and 0.429 for F-2, and F-3 respectively) as a function of decreasing the polymer concentration. The Mean Dissolution Time (MDT) values were increased with the increase in polymer concentration.


2004 ◽  
Vol 27 (10) ◽  
pp. 1626-1629 ◽  
Author(s):  
Yaw-Bin Huang ◽  
Yi-Hung Tsai ◽  
Wan-Chiech Yang ◽  
Jui-Sheng Chang ◽  
Pao-Chu Wu

Author(s):  
P. Amsa ◽  
G. K. Mathan ◽  
S. Magibalan ◽  
E. K. Velliyangiri ◽  
T. Kalaivani ◽  
...  

The major goal of this study was to develop and evaluate Sustained release matrix tablets of Gabapentin with Hibiscus rosa - sinensis leaves mucilage prepared by using wet granulation technique with microcrystalline cellulose as a diluents and magnesium stearate as a lubricant. Pre-compression and post-compression evaluation of physicochemical parameters were carried out and to be within acceptable limits. Drug and polymer compatibility were validated by FTIR measurements. Further, tablets were evaluated for in vitro release study. To get the sustained release of Gabapentin, the concentration of Hibiscus rosa- sinensis mucilage was tuned with a gas-generating agent. The % drug release of all formulation from F1 to F5 showed 91.24%, 80.24%, 70.53%, 62.12% and 49.83% respectively. All the dosage form release kinetics was computed using zero order, first order, Higuchi, and Korsmeyer–Peppas methods. From the above results, it is concluded that the n value of formulation F5 showed 0.78 suggesting anomalous (non-fickian) behavior of the drug. Mucilage from the leaves of Hibiscus rosa-sinensis has a great retarding effect in drug release from sustained release tablets.


1970 ◽  
Vol 8 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Bishyajit Kumar Biswas ◽  
Abu Shara Shasur Rouf

The objective of this study was to develop a sustained release matrix tablet of aceclofenac usinghydroxypropyl methylcellulose (HPMC K15M and HPMC K100M CR) in various proportions as release controllingfactor by direct compression method. The powders for tableting were evaluated for angle of repose, loose bulkdensity, tapped bulk density, compressibility index, total porosity and drug content etc. The tablets were subjected tothickness, weight variation test, drug content, hardness, friability and in vitro release studies. The in vitro dissolutionstudy was carried out for 24 hours using United States Pharmacopoeia (USP) 22 paddle-type dissolution apparatus inphosphate buffer (pH 7.4). The granules showed satisfactory flow properties, compressibility index and drug contentetc. All the tablets complied with pharmacopoeial specifications. The results of dissolution studies indicated that theformulations F-2 and F-3 could extend the drug release up to 24 hours. By comparing the dissolution profiles with themarketed product, it revealed that the formulations exhibited similar drug release profile. From this study, a decreasein release kinetics of the drug was observed when the polymer concentration was increased. Kinetic modeling of invitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport toanomalous type or non-Fickian transport, which was only dependent on the type and amount of polymer used. Thedrug release followed both diffusion and erosion mechanism in all cases. The drug release from these formulationswas satisfactory after 3 months storage in 40°C and 75% RH. Besides, this study explored the optimum concentrationand effect of polymer(s) on acelofenac release pattern from the tablet matrix for 24 hour period.Key words: Aceclofenac; sustained release; hydrophillic matrix; HPMC; direct compression.DOI: 10.3329/dujps.v8i1.5332Dhaka Univ. J. Pharm. Sci. 8(1): 23-30, 2009 (June)


Sign in / Sign up

Export Citation Format

Share Document