scholarly journals Site occupancy behavior of the binary μ phase

2021 ◽  
pp. 122704
Author(s):  
Xuezhi Wu ◽  
Wei Liu ◽  
Xiao-Gang Lu ◽  
Yueshan Jiang ◽  
Yanlin He
2004 ◽  
Vol 365 (1-2) ◽  
pp. 85-89 ◽  
Author(s):  
Y.L Hao ◽  
R Yang ◽  
Y Song ◽  
Y.Y Cui ◽  
D Li ◽  
...  

2017 ◽  
Vol 53 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Q. Long ◽  
J. Wang ◽  
Y. Du ◽  
X. Nie ◽  
Z. Jin

Using first-principles calculations, site occupancy behaviors of transition elements in C15 NbCr2 Laves phase are systematically investigated. Elements Y, Sc, Zr, Hf, Cd, Ta, Ti and Ag prefer to occupy the Nb site, and elements Zn, Pt, Re, Tc, Ir, V, Os, Rh, Ru, Ni, Co, Mn, Fe and Cu favor to occupy the Cr site; whereas elements Mo, W, Pd and Au have weak site preference for Cr or Nb site. The present calculations agree well with the available experimental and previously calculated results. It was found that the site occupancy behavior of transition elements in NbCr2 is mainly affected by the radii of transition elements. The present calculations also propose the correlation between the site preference energy and radii of transition elements.


Author(s):  
Peter G. Self ◽  
Peter R. Buseck

ALCHEMI (Atom Location by CHanneling Enhanced Microanalysis) enables the site occupancy of atoms in single crystals to be determined. In this article the fundamentals of the method for both EDS and EELS will be discussed. Unlike HRTEM, ALCHEMI does not place stringent resolution requirements on the microscope and, because EDS clearly distinguishes between elements of similar atomic number, it can offer some advantages over HRTEM. It does however, place certain constraints on the crystal. These constraints are: a) the sites of interest must lie on alternate crystallographic planes, b) the projected charge density on the alternate planes must be significantly different, and c) there must be at least one atomic species that lies solely on one of the planes.An electron beam incident on a crystal undergoes elastic scattering; in reciprocal space this is seen as a diffraction pattern and in real space this is a modulation of the electron current across the unit cell. When diffraction is strong (i.e., when the crystal is oriented near to the Bragg angle of a low-order reflection) the electron current at one point in the unit cell will differ significantly from that at another point.


Author(s):  
M.T. Otten ◽  
P.R. Buseck

ALCHEMI (Atom Location by CHannelling-Enhanced Microanalysis) is a TEM technique for determining site occupancies in single crystals. The method uses the channelling of incident electrons along specific crystallographic planes. This channelling results in enhanced x-ray emission from the atoms on those planes, thereby providing the required site-occupancy information. ALCHEMI has been applied with success to spinel, olivine and feldspar. For the garnets, which form a large group of important minerals and synthetic compounds, the channelling effect is weaker, and significant results are more difficult to obtain. It was found, however, that the channelling effect is pronounced for low-index zone-axis orientations, yielding a method for assessing site occupancies that is rapid and easy to perform.


Author(s):  
C. A. Bateman ◽  
A.Z. Ringwelski ◽  
R.W. Broach

Gamma (γ) alumina is referred to as a defect spinel because it has a tetragonally distorted spinel structure (AB2O4) and an insufficient number of cations to fill all cation sites. In the spinel structure, the oxygen lattice is cubic close packed with A- and B-site cations in tetrahedral and octahedral coordination, respectively. The 2l⅓ Al atoms per unit cell of γ alumina can distribute themselves across 16 octahedral and 8 tetrahedral sites.The literature differs on where the 2⅔ cation vacancies per unit cell are located. Wilson and McConnell proposed that the vacancies in γ alumina, as first formed by calcining boehmite, are predominantly on the tetrahedral lattice but, with further heat treatment, move to occupy random positions on both octahedral and tetrahedral lattices. One study using NMR showed that the vacancies lay exclusively on the tetrahedral lattice, independent of the calcination temperature. A more-recent study using Rietveld refinement of powder neutron diffraction data suggested that both octahedral and tetrahedral lattices were partially occupied.


1979 ◽  
Vol 40 (C2) ◽  
pp. C2-635-C2-638
Author(s):  
F. Pröbst ◽  
F. E. Wagner ◽  
M. Karger ◽  
G. Wortmann

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-381-C8-382
Author(s):  
T. Kamimori ◽  
W. L. Liu ◽  
H. Kadomatsu ◽  
M. Goto ◽  
H. Fujiwara

CICTP 2017 ◽  
2018 ◽  
Author(s):  
Zhongxiang Feng ◽  
Yingjie Du ◽  
Lei Wang ◽  
Jing Liu ◽  
Weihua Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document