Exact finite difference scheme for second-order, linear ODEs having constant coefficients

2005 ◽  
Vol 287 (4-5) ◽  
pp. 1052-1056 ◽  
Author(s):  
Ronald E. Mickens ◽  
Kale Oyedeji ◽  
Sandra Rucker
1998 ◽  
Vol 3 (1) ◽  
pp. 114-123
Author(s):  
H. Kalis

We will consider the exact finite‐difference scheme for solving the system of differential equations of second order with piece‐wise constant coefficients. It is well‐known, that the presence of large parameters at first order derivatives or small parameters at second order derivatives in the system of hydrodynamics and magnetohydrodynamics (MHD) equations (large Reynolds, Hartmann and others numbers) causes additional difficulties for the applications of general classical numerical methods. Thus, important to work out special methods of solution, the so‐called uniform converging computational methods. This gives a basis for the development of special monotone finite vector‐difference schemes with perturbation coefficient of function‐matrix for solving the system of differential equations. Special finite‐difference approximations are constructed for a steady‐state boundary‐value problem, systems of parabolic type partial differential equations, a system of two MHD equations, 2‐D flows and MHD‐flows equations in curvilinear orthogonal coordinates.


2006 ◽  
Vol 6 (2) ◽  
pp. 154-177 ◽  
Author(s):  
E. Emmrich ◽  
R.D. Grigorieff

AbstractIn this paper, we study the convergence of the finite difference discretization of a second order elliptic equation with variable coefficients subject to general boundary conditions. We prove that the scheme exhibits the phenomenon of supraconvergence on nonuniform grids, i.e., although the truncation error is in general of the first order alone, one has second order convergence. All error estimates are strictly local. Another result of the paper is a close relationship between finite difference scheme and linear finite element methods combined with a special kind of quadrature. As a consequence, the results of the paper can be viewed as the introduction of a fully discrete finite element method for which the gradient is superclose. A numerical example is given.


Sign in / Sign up

Export Citation Format

Share Document