A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset–track system

2010 ◽  
Vol 329 (22) ◽  
pp. 4643-4655 ◽  
Author(s):  
G.X. Chen ◽  
Z.R. Zhou ◽  
H. Ouyang ◽  
X.S. Jin ◽  
M.H. Zhu ◽  
...  
Lubricants ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 18
Author(s):  
Guangxiong Chen

In the present study, the effect of the radius of railway curved tracks on the slip of a wheel on a rail is studied. A 3D finite-element model of a wheelset-track system is established when the creep force between the wheel and rail is saturated. The occurrence propensity of the self-excited vibration of the wheelset-track system is predicted. It is concluded that the radius of curved tracks has a strong effect on the slip of wheels on rails. In the tightly curved tracks, the slip of the wheel of the leading wheelset on the rail always occurs. The wheelset-track system has a strong occurrence propensity for unstable vibrations on the tightly curved tracks. The accuracy of the rail corrugation prediction based on the unstable vibrations of wheelset-track systems is determined to be 85–90% or higher.


Author(s):  
GX Chen ◽  
S Zhang ◽  
BW Wu ◽  
XN Zhao ◽  
ZF Wen ◽  
...  

In a field test, three corrugation profiles of rails and their corresponding vibrations were measured, and the wavelengths and frequencies of rail corrugations were obtained. In the model prediction, finite-element models of the self-excited vibrations corresponding to three different wheelset–track systems were established. The corrugation frequencies of these models were predicted, and a comparison between the measured and the predicted corrugation frequencies showed that they are in good agreement. It can be concluded that the self-excited vibration of a wheelset–track system can cause rail corrugation. A benchmark condition for the validation of rail corrugation models is proposed.


Author(s):  
Ali Merdji ◽  
Belaid Taharou ◽  
Rajshree Hillstrom ◽  
Ali Benaissa ◽  
Sandipan Roy ◽  
...  

2020 ◽  
Vol 10 (14) ◽  
pp. 4737
Author(s):  
Chao Xu ◽  
Suli Pan

The coefficient of consolidation is traditionally considered as a constant value in soil consolidation calculations. This paper uses compression and recompression indexes to calculate the solution-dependent nonlinear compressibility, thus overconsolidation and normal consolidation are separated during the calculations. Moreover, the complex nonlinear consolidation can be described using the nonlinear compressibility and a nonlinear permeability. Then, the finite element discrete equation with consideration of the time-dependent load is derived, and a corresponding program is developed. Subsequently, a case history is conducted for verifying the proposed method and the program. The results show that the method is sufficiently accurate, indicating the necessity of considering nonlinearity for consolidation calculations. Finally, three cases are compared to reveal the importance of separating the overconsolidation and normal consolidation. Overall, this study concluded that it is inadequate to consider just one consolidation status in calculations, and that the proposed method is more reasonable for guiding construction.


Sign in / Sign up

Export Citation Format

Share Document