Structural damage detection based on the reconstructed phase space for reinforced concrete slab: Experimental study

2013 ◽  
Vol 332 (4) ◽  
pp. 1061-1078 ◽  
Author(s):  
Zhenhua Nie ◽  
Hong Hao ◽  
Hongwei Ma
2013 ◽  
Vol 405-408 ◽  
pp. 1815-1819
Author(s):  
Wen Sheng Yu ◽  
Zhu Long Li ◽  
Xiao Ru Xie ◽  
Li Yuan Guo

To analyze the earth pressure of corrugated steel culvert under high fill embankment, a field test was taken and the change law was got with the filling height increasing, the force state when geotechnical grilles were laid on the top of corrugated steel culvert was compared to that of reinforced concrete slab culvert. Results show that the pressure on the top of corrugated steel culvert is smaller than that on the external in same level when test points are near to culvert, the values of test points above and below geotechnical grilles are close, and the pressure of corrugated steel culvert is smaller than that of reinforced concrete slab culvert when filling height is above 7.3 m. So analysis indicates corrugated steel culvert spreads the upper load better, the geotechnical grille can reduce the pressure effectively through earth pressure redistribution, and the mechanical property of corrugated steel culvert is better than reinforced concrete slab culvert under high fill embankment.


2017 ◽  
Vol 8 (1) ◽  
pp. 33-47 ◽  
Author(s):  
Guilherme Ferreira Gomes ◽  
Yohan Alí Diaz Mendéz ◽  
Sebastião Simões da Cunha ◽  
Antônio Carlos Ancelotti

2020 ◽  
Author(s):  
Juan Carlos Burgos Díaz ◽  
Bilal Ali Qadri ◽  
Martin Dalgaard Ulriksen

An intricacy in vibration-based structural damage detection (VSDD) relates to environmental variabilities imposing limitations to the damage detectability. One method that has been put forth to resolve the issue is cointegration. Here, non-stationary vibration features are linearly combined into stationary residuals, which are then employed as damage indices under the assumption that the non-stationarity is governed by environmental variabilities. In the present paper, the feasibility of using cointegration to mitigate environmental variabilities while retaining sensitivity to damage is examined through an experimental study with a steel beam. A temperature-based environmental variability is introduced to the beam by use of a heating cable, while damage is emulated by adding local mass perturbations. The vibration response of the beam in different environmental and structural states is captured and utilized as features in a cointegration-based damage detection scheme. The performance of the scheme is assessed and compared to that of a scheme not accounting for the variability on the basis of the false positive ratio (FPR), the true positive ratio (TPR), and the area under the receiver operating characteristic curve (AUC). The results show that cointegration effectively mitigates the temperature variability and allows for an improved damage detectability compared to that of the scheme without a mitigation strategy


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Zhenhua Nie ◽  
Tuan Ngo ◽  
Hongwei Ma

This paper presents a novel damage detection method based on the reconstructed phase space of vibration signals using a single sensor. In this approach, a moving mass is applied as excitation source, and the structure vibration responses at different positions are measured using a single sensor. A Moving Filter Function (MFF) is also presented to be used to separate and filter the responses before phase space reconstruction. Using the determined time delay and embedding dimensions, the responses are translated from time domain into the spatial domain. The index CPST (changes of phase space topology) values are calculated from the reconstructed phase space and used to identify structural damage. To demonstrate the method, six analysis scenarios for a beam-like structure considering the moving mass magnitude, damage location, the single sensor location, moving mass velocity, multiple types of damage, and the responses contaminated with noise are calculated. The acceleration and displacement responses are both used to identify the damage. The results indicate that the proposed method using displacement response is more sensitive to damage than that of acceleration responses. The results also proved that the proposed method can use a single sensor installed at different location of the beam to locate the damage/much damage reliably, even though the responses are contaminated with noise.


Sign in / Sign up

Export Citation Format

Share Document