Development of semi-active vibration control strategy for horizontal axis wind turbine tower using multiple magneto-rheological tuned liquid column dampers

2019 ◽  
Vol 457 ◽  
pp. 15-36 ◽  
Author(s):  
Saptarshi Sarkar ◽  
Arunasis Chakraborty
2013 ◽  
Vol 744 ◽  
pp. 528-531
Author(s):  
Feng Xing ◽  
Jian Guo Cao ◽  
Jing Wang ◽  
Chang Yong Deng

This paper analyses the active vibration control technology on the piezoelectric ceramics car-body pieces in fuzzy control Strategy. Adaptive controllers, based on fuzzy logics, are synthesized for the control of vibration of body structure. Piezoelectric element, control system and body structure have been combined to be a intelligent response system to external drive and it’s own vibration. This system can effect reducing body structure’s reaction from environmental load with external energy. The availability of the control strategy has been confirmed by experiments.


2015 ◽  
Author(s):  
Aldemir Ap Cavalini Jr ◽  
Edson Hideki Koroishi ◽  
Adriano Silva Borges ◽  
Luiz Gustavo Pereira ◽  
Valder Steffen Jr

2012 ◽  
Vol 268-270 ◽  
pp. 1239-1243
Author(s):  
Kai Long ◽  
Ji Xiu Wu

In order to realize the buckling strength design for the opening door of the large-scale horizontal axis wind turbine tower, the method combined with the engineering method and the FEM was presented. The FE model of the door was established. The first-order buckling eigenvalues and buckling modes for three different structures were calculated and analyzed. Based on engineering method, the stress and buckling strength for the sections of tubular tower were obtained. Corrected by FEM results, the tower door with opening buckling strength were checked by engineering method. The results were compared with those by FEM. The safe design structure anti-buckling were presented. The method presented in this paper is feasible and effective for the opening door design in large-scale horizontal axis wind turbine tower.


2013 ◽  
Vol 562-565 ◽  
pp. 1527-1530
Author(s):  
Feng Xing ◽  
Jian Guo Cao ◽  
Jing Wang ◽  
Chang Yong Deng

This paper analyses the active vibration control technology on the piezoelectric ceramics car-body pieces in fuzzy control Strategy. Adaptive controllers, based on fuzzy logics, are synthesized for the control of vibration of body structure. Piezoelectric element, control system and body structure have been combined to be a intelligent response system to external drive and it’s own vibration. This system can effect reducing body structure’s reaction from environmental load with external energy. The availability of the control strategy has been confirmed by experiments.


Author(s):  
Yusuke Sato ◽  
Hiroshi Sodeyama ◽  
Makoto Hayama ◽  
Shin Morishita

As one of the semi-active vibration control devices for mechanical or civil structures, magneto-rheological fluid dampers have been enthusiastically studied and developed since the 1990s. A new magneto-rheological material for such dampers has been developed to provide a practical solution to the significant common drawback of sedimentation of ferromagnetic fine particles in the fluid. Industrial grease is used as the dispersion medium in this material. The thickener to be added in the grease to control the rheological properties seems to prevent separation of the particles from the dispersion medium. Several performance tests were carried out with a proto-type of the damper with the newly developed magneto-rheological grease, namely, the magneto-rheological grease damper. Based on the test results, the energy dissipation capabilities of the damper and the basic characteristics of the magneto-rheological grease were verified to provide semi-active vibration control. Moreover, the analytically-derived design formulae for the damper were improved on the basis of the test results.


Sign in / Sign up

Export Citation Format

Share Document