Dynamics of a shrouded cantilevered pipe subjected to internal and annular flows

2021 ◽  
Vol 490 ◽  
pp. 115729
Author(s):  
Sophie L. Minas ◽  
Michael P. Païdoussis
1994 ◽  
Vol 59 (12) ◽  
pp. 2595-2603
Author(s):  
Lothar Ebner ◽  
Marie Fialová

Two regions of instabilities in horizontal two-phase flow were detected. The first was found in the transition from slug to annular flow, the second between stratified and slug flow. The existence of oscillations between the slug and annular flows can explain the differences in the limitation of the slug flow in flow regime maps proposed by different authors. Coexistence of these two regimes is similar to bistable behaviour of some differential equation solutions.


1995 ◽  
Vol 20 (2) ◽  
pp. 131-134 ◽  
Author(s):  
J. Tihon ◽  
J. Legrand ◽  
H. Aouabed ◽  
P. Legentilhomme
Keyword(s):  

2017 ◽  
Vol 29 (2) ◽  
pp. 024106 ◽  
Author(s):  
H. V. Moradi ◽  
J. M. Floryan

2000 ◽  
Vol 16 (3) ◽  
pp. 264-272 ◽  
Author(s):  
Xu Jian ◽  
Huang Yuying
Keyword(s):  

2012 ◽  
Vol 86 (6) ◽  
Author(s):  
Roberto Camassa ◽  
M. Gregory Forest ◽  
Long Lee ◽  
H. Reed Ogrosky ◽  
Jeffrey Olander

Author(s):  
Dana Giacobbi ◽  
Stephanie Rinaldi ◽  
Christian Semler ◽  
Michael P. Pai¨doussis

This paper investigates the dynamics of a slender, flexible, aspirating cantilevered pipe, ingesting fluid at its free end and conveying it towards its clamped end. The problem is interesting not only from a fundamental perspective, but also because applications exist, notably in ocean mining [1]. First, the need for the present work is demonstrated through a review of previous research into the topic — spanning many years and yielding often contradictory results — most recently concluding that the system loses stability by flutter at relatively low flow velocities [2]. In the current paper, that conclusion is refined and expanded upon by exploring the problem in three ways: experimentally, numerically and analytically. First, air-flow experiments, in which the flow velocity of the fluid was varied and the frequency and amplitude of oscillation of the pipe were measured, were conducted using different elastomer pipes and intake shapes. Second, a fully-coupled Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM) model was developed in ANSYS in order to simulate experiments and corroborate experimental results. Finally, using an analytical approach, the existing linear equation of motion describing the system was significantly improved upon, and then solved via the Galerkin method in order to determine its stability characteristics. Heavily influenced by a CFD analysis, the proposed analytical model is different from previous ones, most notably because of the inclusion of a two-part fluid depressurization at the intake. In general, both the actual and numerical experiments suggest a first-mode loss of stability by flutter at relatively low flow velocities, which agrees with the results from the new analytical model.


2021 ◽  
Author(s):  
Thad Nosar ◽  
Pooya Khodaparast ◽  
Wei Zhang ◽  
Amin Mehrabian

Abstract Equivalent circulation density of the fluid circulation system in drilling rigs is determined by the frictional pressure losses in the wellbore annulus. Flow loop experiments are commonly used to simulate the annular wellbore hydraulics in the laboratory. However, proper scaling of the experiment design parameters including the drill pipe rotation and eccentricity has been a weak link in the literature. Our study uses the similarity laws and dimensional analysis to obtain a complete set of scaling formulae that would relate the pressure loss gradients of annular flows at the laboratory and wellbore scales while considering the effects of inner pipe rotation and eccentricity. Dimensional analysis is conducted for commonly encountered types of drilling fluid rheology, namely, Newtonian, power-law, and yield power-law. Appropriate dimensionless groups of the involved variables are developed to characterize fluid flow in an eccentric annulus with a rotating inner pipe. Characteristic shear strain rate at the pipe walls is obtained from the characteristic velocity and length scale of the considered annular flow. The relation between lab-scale and wellbore scale variables are obtained by imposing the geometric, kinematic, and dynamic similarities between the laboratory flow loop and wellbore annular flows. The outcomes of the considered scaling scheme is expressed in terms of closed-form formulae that would determine the flow rate and inner pipe rotation speed of the laboratory experiments in terms of the wellbore flow rate and drill pipe rotation speed, as well as other parameters of the problem, in such a way that the resulting Fanning friction factors of the laboratory and wellbore-scale annular flows become identical. Findings suggest that the appropriate value for lab flow rate and pipe rotation speed are linearly related to those of the field condition for all fluid types. The length ratio, density ratio, consistency index ratio, and power index determine the proportionality constant. Attaining complete similarity between the similitude and wellbore-scale annular flow may require the fluid rheology of the lab experiments to be different from the drilling fluid. The expressions of lab flow rate and rotational speed for the yield power-law fluid are identical to those of the power-law fluid case, provided that the yield stress of the lab fluid is constrained to a proper value.


Sign in / Sign up

Export Citation Format

Share Document