Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou’s pseudo amino acid composition

2013 ◽  
Vol 318 ◽  
pp. 1-12 ◽  
Author(s):  
Yen-Kuang Chen ◽  
Kuo-Bin Li

Membrane protein are very important and play significantly in the field of biology and medicine. The main purpose is to find suitable features of a membrane protein. Various features extraction methods are use to find membrane protein and their types. PseAAC (Pseudo Amino Acid Composition) is a one of the feature extraction method which was used to find the localization of the protein, which helps in the detection of membrane types. Therefore, in this study, a novel feature extraction method which is an integration of the pseudo amino acid composition integer values mapped in discrete sequence numbers in a matrix. The proposed scheme avoids biasing among the different membrane proteins and their types. Decision making for predicting the identification of membrane protein types was performed using an algorithm framework to improve the learning accuracy, by putting the training samples weights in the learning process of AdaBoost. The performance of different ensemble classifiers such as Random Forest, AdaBoost, is analyzed. The best accuracy achieved is 91.50% for with the Matthews correlation coefficient is 83.0%, and Cohen’s Kappa value is 82.7%


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhixia Teng ◽  
Zitong Zhang ◽  
Zhen Tian ◽  
Yanjuan Li ◽  
Guohua Wang

Abstract Background Amyloids are insoluble fibrillar aggregates that are highly associated with complex human diseases, such as Alzheimer’s disease, Parkinson’s disease, and type II diabetes. Recently, many studies reported that some specific regions of amino acid sequences may be responsible for the amyloidosis of proteins. It has become very important for elucidating the mechanism of amyloids that identifying the amyloidogenic regions. Accordingly, several computational methods have been put forward to discover amyloidogenic regions. The majority of these methods predicted amyloidogenic regions based on the physicochemical properties of amino acids. In fact, position, order, and correlation of amino acids may also influence the amyloidosis of proteins, which should be also considered in detecting amyloidogenic regions. Results To address this problem, we proposed a novel machine-learning approach for predicting amyloidogenic regions, called ReRF-Pred. Firstly, the pseudo amino acid composition (PseAAC) was exploited to characterize physicochemical properties and correlation of amino acids. Secondly, tripeptides composition (TPC) was employed to represent the order and position of amino acids. To improve the distinguishability of TPC, all possible tripeptides were analyzed by the binomial distribution method, and only those which have significantly different distribution between positive and negative samples remained. Finally, all samples were characterized by PseAAC and TPC of their amino acid sequence, and a random forest-based amyloidogenic regions predictor was trained on these samples. It was proved by validation experiments that the feature set consisted of PseAAC and TPC is the most distinguishable one for detecting amyloidosis. Meanwhile, random forest is superior to other concerned classifiers on almost all metrics. To validate the effectiveness of our model, ReRF-Pred is compared with a series of gold-standard methods on two datasets: Pep-251 and Reg33. The results suggested our method has the best overall performance and makes significant improvements in discovering amyloidogenic regions. Conclusions The advantages of our method are mainly attributed to that PseAAC and TPC can describe the differences between amyloids and other proteins successfully. The ReRF-Pred server can be accessed at http://106.12.83.135:8080/ReRF-Pred/.


Sign in / Sign up

Export Citation Format

Share Document