scholarly journals A cost minimisation and Bayesian inference model predicts startle reflex modulation across species

2015 ◽  
Vol 370 ◽  
pp. 53-60 ◽  
Author(s):  
Dominik R. Bach
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iris Schutte ◽  
Johanna M. P. Baas ◽  
Ivo Heitland ◽  
J. Leon Kenemans

AbstractPrevious studies have not clearly demonstrated whether motivational tendencies during reward feedback are mainly characterized by appetitive responses to a gain or mainly by aversive consequences of reward omission. In the current study this issue was addressed employing a passive head or tails game and using the startle reflex as an index of the appetitive-aversive continuum. A second aim of the current study was to use startle-reflex modulation as a means to compare the subjective value of monetary rewards of varying magnitude. Startle responses after receiving feedback that a potential reward was won or not won were compared with a baseline condition without a potential gain. Furthermore, startle responses during anticipation of no versus potential gain were compared. Consistent with previous studies, startle-reflex magnitudes were significantly potentiated when participants anticipated a reward compared to no reward, which may reflect anticipatory arousal. Specifically for the largest reward (20-cents) startle magnitudes were potentiated when a reward was at stake but not won, compared to a neutral baseline without potential gain. In contrast, startle was not inhibited relative to baseline when a reward was won. This suggests that startle modulation during feedback is better characterized in terms of potentiation when missing out on reward rather than in terms of inhibition as a result of winning. However, neither of these effects were replicated in a more targeted second experiment. The discrepancy between these experiments may be due to differences in motivation to obtain rewards or differences in task engagement. From these experiments it may be concluded that the nature of the processing of reward feedback and reward cues is very sensitive to experimental parameters and settings. These studies show how apparently modest changes in these parameters and settings may lead to quite different modulations of appetitive/aversive motivation. A future experiment may shed more light on the question whether startle-reflex modulation after feedback is indeed mainly characterized by the aversive consequences of reward omission for relatively large rewards.


2008 ◽  
Vol 23 ◽  
pp. S318
Author(s):  
M. Jiménez-Giménez ◽  
A. Koeneke ◽  
J. Borrell ◽  
G. Rubio

Author(s):  
J. Mas-Soler ◽  
Pedro C. de Mello ◽  
Eduardo A. Tannuri ◽  
Alexandre N. Simos ◽  
A. Souto-Iglesias

Abstract Motion based wave inference allows the estimation of the directional sea spectrum from the measured motions of a vessel. Solving the resulting inverse problem is challenging as it is often ill-posed; as a matter of fact, statistical errors of the estimated platform response functions (RAOs) may lead to misleading estimations of the sea states as many noise values are severely amplified in the mathematical process. Hence, in order to obtain reliable estimations of the sea conditions some hypothesis must be included by means of regularization parameters. This work discusses how these errors affect the regularization parameters and the accuracy of the sea state estimations. For this purpose, a statistical quantification of the errors associated to the estimated transfer functions has been included in an expanded Bayesian inference approach. Then, the resulting statistical inference model has been verified by means of a comparison between the outputs of this approach and those obtained without considering the statistical errors in the Bayesian inference. The assessment of the impact on the accuracy of the estimations is based on the results of a dedicated model-scale experimental campaign, which includes more than 150 different test conditions.


Sign in / Sign up

Export Citation Format

Share Document