Corneal Nerve and Epithelial Cell Alterations in Corneal Allodynia: An In Vivo Confocal Microscopy Case Series

2017 ◽  
Vol 15 (1) ◽  
pp. 139-151 ◽  
Author(s):  
Pedram Hamrah ◽  
Yureeda Qazi ◽  
Bashar Shahatit ◽  
Mohammad H. Dastjerdi ◽  
Deborah Pavan-Langston ◽  
...  
2020 ◽  
pp. bjophthalmol-2019-315449 ◽  
Author(s):  
Giuseppe Giannaccare ◽  
Federico Bernabei ◽  
Marco Pellegrini ◽  
Fabio Guaraldi ◽  
Federica Turchi ◽  
...  

AimsTo evaluate bilateral morphometric changes of corneal sub-basal nerve plexus (CSNP) occurring after unilateral cataract surgery by in vivo confocal microscopy (IVCM) images analysed with automated software.MethodsIVCM was performed before (V0) and 1 month after surgery (V1) in both operated eyes (OEs) and unoperated eyes (UEs) of 30 patients. Thirty age and sex-matched subjects acted as controls. Corneal nerve fibre density (CNFD), corneal nerve branch density (CNBD), corneal nerve fibre length (CNFL), corneal nerve total branch density (CTBD), corneal nerve fibre area (CNFA), corneal nerve fibre width, corneal nerve fractal dimension (CNFrD) and dendritic cells density were calculated.ResultsMean CNFD, CNBD, CNFL, CTBD, CNFA and CNFrD significantly decreased at V1 versus V0 in both eyes (respectively, 15.35±7.00 vs 21.21±6.56 n/mm2 in OEs and 20.11±6.69 vs 23.20±7.26 in UEs; 13.57±12.16 vs 26.79±16.91 n/mm2 in OEs and 24.28±14.88 vs 29.76±15.25 in UEs; 9.67±3.44 mm/mm2 vs 13.49±3.42 in OEs and 12.53±3.60 vs 14.02±3.82 in UEs; 22.81±18.77 vs 42.25±24.64 n/mm2 in OEs and 38.06±20.52 vs 43.93±22.27 in UEs; 0.0040±0.0021 vs 0.0058±0.0020 mm2/mm2 in OEs and 0.0049±0.0016 vs 0.0057±0.0019 in UEs; 1.418±0.058 vs 1.470±0.037 in OEs and 1.466±0.040 vs 1.477±0.036 in UEs; always p<0.049).ConclusionPatients undergoing cataract surgery exhibit bilateral alterations of CSNP. This finding could have broad implications in the setting of sequential cataract surgery.


2020 ◽  
Vol 9 (11) ◽  
pp. 3574
Author(s):  
Emilio Pedrotti ◽  
Chiara Chierego ◽  
Tiziano Cozzini ◽  
Tommaso Merz ◽  
Neil Lagali ◽  
...  

Examination of the corneal surface by in vivo confocal microscopy (IVCM) allows for objective identification of corneal and conjunctival cell phenotypes to evaluate different epithelialization patterns. Detection of a corneal-conjunctival epithelial transition could be considered as a sign of restored epithelial function following simple limbal epithelial transplantation (SLET). This is a prospective, interventional case series. We assessed patients with limbal stem cell deficiency (LSCD) by IVCM, preoperatively and at monthly intervals following SLET. Sectors in the central and peripheral cornea were scanned. Immediately upon detection of multi-layered cells with the epithelial phenotype in the central cornea and confirmation of epithelial transition in all corneal sectors, the decision for keratoplasty was taken. Ten patients were enrolled. After SLET, epithelial phenotype in the central cornea and an epithelial transition were identified within six and nine months in seven and one patients, respectively. One patient was a partial success and one failed. Five patients underwent keratoplasty, with stable results up to 12 months. Identification of the epithelial transition zone by IVCM permits assessment of the efficacy of SLET, enabling subsequent planning of keratoplasty for visual rehabilitation. The stability of the corneal surface following keratoplasty confirms that the renewal of the corneal epithelium was effectively retained.


Cornea ◽  
2000 ◽  
Vol 19 (Supplement 2) ◽  
pp. S131
Author(s):  
T Tervo ◽  
T U Valle ◽  
J AO Moilanen ◽  
M E Rosenberg ◽  
I SJ Tuominen ◽  
...  

2022 ◽  
Author(s):  
Takahiko Hayashi ◽  
Atsuyuki Ishida ◽  
Akira Kobayashi ◽  
Takefumi Yamaguchi ◽  
Nobuhisa Mizuki ◽  
...  

Abstract This study evaluated changes in corneal nerves and the number of dendritic cells (DCs) in corneal basal epithelium following Descemet membrane endothelial keratoplasty (DMEK) surgery for bullous keratopathy (BK). Twenty-three eyes from 16 consecutive patients that underwent DMEK for BK were included. Eyes of age-matched patients that underwent pre-cataract surgery (12 eyes) were used as controls. In vivo confocal microscopy was performed pre- and postoperatively at 6, 12, and 24 months. Corneal nerve length, corneal nerve trunks, number of branches, and the number of DCs were determined. The total corneal nerve length of 1634.7 ± 1389.1 μm /mm2 before surgery was significantly increased in a time-dependent manner to 4485.8 ± 1403.7 μm /mm2, 6949.5 ± 1477.1 μm /mm2, and 9389.2 ± 2302.2 μm /mm2 at 6, 12, and 24 months after DMEK surgery, respectively. The DC density in BK cornea pre- and postoperatively at 6 months was significantly higher than in the controls, and decreased postoperatively at 12 and 24 months and was significantly lower than that at 6 months postoperatively. Thus, our results suggest that DMEK can repair and normalize the corneal environment.


2019 ◽  
Vol 30 (5) ◽  
pp. 908-916 ◽  
Author(s):  
Munirah Alafaleq ◽  
Cristina Georgeon ◽  
Kate Grieve ◽  
Vincent M Borderie

Purpose: The aim of this study was to assess structural and histological changes associated with pre-Descemet corneal dystrophy with multimodal in vivo imaging. Methods: Retrospective case series including eight corneas from four unrelated male patients with pre-Descemet corneal dystrophy characterized by the presence of punctiform gray opacities located just anterior to the Descemet membrane at slit-lamp examination of both eyes. In vivo confocal microscopy images were obtained in the central, paracentral, and peripheral corneal zones from the superficial epithelial cell layer down to the corneal endothelium in both eyes. Spectral domain optical coherence tomography scans (central and limbal zones) and mapping of both corneas were acquired. Results: Diffuse small extracellular stromal deposits, presence of enlarged hyperreflective keratocytes in the posterior stroma with either hyperreflective or hyporeflective intracellular dots, and presence of activated keratocytes in the very anterior stroma were observed in all corneas with in vivo confocal microscopy. Spectral domain optical coherence tomography scans showed a hyperreflective line anterior to Descemet’s membrane running from limbus to limbus and associated with a second thinner hyperreflective line just beneath Bowman’s layer. Fine hyperreflective particles were observed in the posterior, mid, and anterior stroma on optical coherence tomography scans. Conclusion: The clinical presentation and structural anomalies found in isolated sporadic pre-Descemet corneal dystrophy are in favor of a degenerative process affecting corneal keratocytes with no epithelial or endothelial involvement. The maximum damage is found just anterior to the Descemet membrane resulting in pre-Descemet membrane location of stromal opacities. Multimodal imaging of cornea reveals that the disorder affects the whole stroma and it permits better understanding of pre-Descemet corneal dystrophy pathophysiology together with ascertained diagnosis.


Sign in / Sign up

Export Citation Format

Share Document