fibre length
Recently Published Documents


TOTAL DOCUMENTS

592
(FIVE YEARS 113)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhiyue Zhou ◽  
Zefeng Wang ◽  
Wei Huang ◽  
Yulong Cui ◽  
Hao Li ◽  
...  

AbstractFibre lasers operating at the mid-IR have attracted enormous interest due to the plethora of applications in defence, security, medicine, and so on. However, no continuous-wave (CW) fibre lasers beyond 4 μm based on rare-earth-doped fibres have been demonstrated thus far. Here, we report efficient mid-IR laser emission from HBr-filled silica hollow-core fibres (HCFs) for the first time. By pumping with a self-developed thulium-doped fibre amplifier seeded by several diode lasers over the range of 1940–1983 nm, narrow linewidth mid-IR emission from 3810 to 4496 nm has been achieved with a maximum laser power of about 500 mW and a slope efficiency of approximately 18%. To the best of our knowledge, the wavelength of 4496 nm with strong absorption in silica-based fibres is the longest emission wavelength from a CW fibre laser, and the span of 686 nm is also the largest tuning range achieved to date for any CW fibre laser. By further reducing the HCF transmission loss, increasing the pump power, improving the coupling efficiency, and optimizing the fibre length together with the pressure, the laser efficiency and output power are expected to increase significantly. This work opens new opportunities for broadly tunable high-power mid-IR fibre lasers, especially beyond 4 μm.


2022 ◽  
Vol 11 (2) ◽  
pp. 393
Author(s):  
Alvin Wei Jun Teo ◽  
Hassan Mansoor ◽  
Nigel Sim ◽  
Molly Tzu-Yu Lin ◽  
Yu-Chi Liu

Keratoconus is the most common primary corneal ectasia characterized by progressive focal thinning. Patients experience increased irregular astigmatism, decreased visual acuity and corneal sensitivity. Corneal collagen crosslinking (CXL), a minimally invasive procedure, is effective in halting disease progression. Historically, keratoconus research was confined to ex vivo settings. In vivo confocal microscopy (IVCM) has been used to examine the corneal microstructure clinically. In this review, we discuss keratoconus cellular changes evaluated by IVCM before and after CXL. Cellular changes before CXL include decreased keratocyte and nerve densities, disorganized subbasal nerves with thickening, increased nerve tortuosity and shortened nerve fibre length. Repopulation of keratocytes occurs up to 1 year post procedure. IVCM also correlates corneal nerve status to functional corneal sensitivity. Immediately after CXL, there is reduced nerve density and keratocyte absence due to mechanical removal of the epithelium and CXL effect. Nerve regeneration begins after 1 month, with nerve fibre densities recovering to pre-operative levels between 6 months to 1 year and remains stable up to 5 years. Nerves remain tortuous and nerve densities are reduced. Corneal sensitivity is reduced immediately postoperatively but recovers with nerve regeneration. Our article provides comprehensive review on the use of IVCM imaging in keratoconus patients.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 453
Author(s):  
Andrea Petrella ◽  
Sabino De De Gisi ◽  
Milvia Elena Di Di Clemente ◽  
Francesco Todaro ◽  
Ubaldo Ayr ◽  
...  

Environmentally sustainable cement mortars containing wheat straw (Southern Italy, Apulia region) of different length and dosage and perlite beads as aggregates were prepared and characterised by rheological, thermal, acoustic, mechanical, optical and microstructural tests. A complete replacement of the conventional sand was carried out. Composites with bare straw (S), perlite (P), and with a mixture of inorganic and organic aggregates (P/S), were characterised and compared with the properties of conventional sand mortar. It was observed that the straw fresh composites showed a decrease in workability with fibre length decrease and with increase in straw volume, while the conglomerates with bare perlite, and with the aggregate mixture, showed similar consistency to the control. The thermal insulation of the straw mortars was extremely high compared to the sand reference (85–90%), as was the acoustic absorption, especially in the 500–1000 Hz range. These results were attributed to the high porosity of these composites and showed enhancement of these properties with decrease in straw length and increase in straw volume. The bare perlite sample showed the lowest thermal insulation and acoustic absorption, being less porous than the former composites, while intermediate values were obtained with the P/S samples. The mechanical performance of the straw composites increased with length of the fibres and decreased with fibre dosage. The addition of expanded perlite to the mixture produced mortars with an improvement in mechanical strength and negligible modification of thermal properties. Straw mortars showed discrete cracks after failure, without separation of the two parts of the specimens, due to the aggregate tensile strength which influenced the impact compression tests. Preliminary observations of the stability of the mortars showed that, more than one year from preparation, the conglomerates did not show detectable signs of degradation.


2022 ◽  
Vol 58 (4) ◽  
pp. 216-221
Author(s):  
Hendra Suherman ◽  
Kamdini Aksa ◽  
Yovial Mahyoedin ◽  
Edi Septe ◽  
Irmayani Irmayani

Kenaf is a nonwoody fibrous plant, and its fibre can be potentially used as a reinforcement in the matrix to produce biocomposite materials. The properties of biocomposite materials are highly dependent on the reinforcing material and the matrix used as a binder. This study used kenaf fibre as a reinforcing material with different compositions (10, 20, and 30 wt.%) and different fibre lengths (1 cm and 3 cm) in the matrix using the casting process. Low viscosity epoxy resin (635 thin epoxy resin) with a viscosity of 6 poise was used as the matrix. The results showed that the highest flexural strength, impact strength and shore hardness were obtained at a 30 wt.% kenaf fibre composition with a 1-cm kenaf fibre length, namely, 85 MPa, 338 KJ/m2 and 98 SHD, respectively. The length of the fibre in the matrix affects the mechanical properties of the resulting biocomposite. This condition is caused by kenaf fibres with a length of 1 cm being more dispersed in the matrix than fibres with a length of 3 cm.


Wood Research ◽  
2021 ◽  
Vol 66 (6) ◽  
pp. 912-920
Author(s):  
MOHAMMAD DAHMARDEH GHALEHNO ◽  
BABAK NOSRATI SHESHKAL ◽  
FARHAD KOOL ◽  
MIHA HUMAR ◽  
MOHSEN BAHMANI

The goal of this research is to investigate some morphological (fibre length, fibre diameter, cell wall thickness, Runkel coefficient, flexibility coefficient, slenderness coefficient, rigidity coefficient, Luce's coefficient, solid coefficient), physical (dry wood density, volumetric shrinkage) and chemical (cellulose, hemicellulose, lignin, ash and acetone soluble extractives contents) composition of Konar (Ziziphus spina-christi) wood grown in Hormozgan province, Iran. For this purpose, three normal trees were selected randomly and a disk was cut from each one at breast height. Anatomical inspection revealed that the species was diffuse porous, with distinctive growth rings, simple preformation plate, with polygonal openings, and banded or diffuse-in aggregates parenchyma. The average values of wood dry density, fiber length, fiber diameter, cell wall thickness, Runkel coefficient, flexibility coefficient, felting coefficient, Luce’s coefficient, solid coefficient, rigidity coefficient were 0.926, 52.1, 77.85, 0.57, 163 ×103 μ3 and 0.48. Cellulose, hemicellulose, lignin, acetone soluble, extractives, ashcontents were43.34, 19.98, 33.9, 6.42 and 2.78%, resp.


IAWA Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Kamil E. Frankiewicz ◽  
Alexei A. Oskolski ◽  
Jean-Pierre Reduron ◽  
Łukasz Banasiak ◽  
Jorge-Alfredo Reyes-Betancort ◽  
...  

Abstract Apioideae is the biggest and the most diverse of four subfamilies recognised within Apiaceae. Except for a few, likely derived, woody clades, most representatives of this subfamily are herbaceous. In the present study, we assessed stem anatomy of 87, mostly therophytic and hemicryptophytic, species from at least 20 distinct lineages of Apioideae, and juxtaposed them with 67 species from our previous anatomical projects also focused on this subfamily. Comparing our data with the literature, we found that wood anatomy does not allow for a distinction between apioids and their close relatives (Azorelloideae, Saniculoideae), but more distantly related Mackinlayoideae differ from Apioideae in their perforation plate type. Vessel element and fibre length, and vessel diameter were positively correlated with plant height: phenomena already reported in literature. Similar pattern was retrieved for vertical intervessel pit diameter. Wood ground tissue in apioids ranges from entirely fibrous to parenchymatous. The shortening of internodes seems to favour the formation of parenchymatic ground tissue, whereas the early shift to flowering promotes the deposition of fibrous wood in monocarpic species. These results support a hypothesis on interdependence among internode length, reproductive strategy, and wood ground tissue type.


Les/Wood ◽  
2021 ◽  
Vol 70 (2) ◽  
Author(s):  
Kojo Agyapong Afrifah ◽  
Enoch Adjei-Mensah

Alstonia boonei, an abundant lesser utilized species within the West African Subregion, was evaluated as an alternative raw material for pulp and paper production. The basic density (BD), fibre characteristics [fibre length (FL), fibre diameter (FD), lumen diameter (LD) and wall thickness (WT)], derived anatomical indices [Flexibility Ratio (FR), Slenderness Ratio (SR), Rigidity Coefficient (RC), Luce’s Shape Factor (LSF), Solids Factor (SF) and Runkel Ratio (RR)] and chemical composition (lignin, holocellulose, 1% NaOH solubility and ash contents) of A. boonei were studied to evaluate variation along the trunk (base, middle and top portions) and ascertain its suitability for pulp and paper production. Significant variations were observed in the density and fibre characteristics along the trunk of the tree. Although the FD was large, the observed adequate FL, thin-wall and large LD implied easy beating of fibres and manufacture of dense, smooth and strong papers. The favourable SF, RR, FR, RC, and LSF values obtained for the fibres would produce papers with suitable burst and tearing strengths and folding endurance. Chemically the lower lignin (< 30%), ash and 1% NaOH solubility and the high holocellulose contents of A. boonei, will generate a higher pulp yield. A. boonei although a low-density species, will be desirable for pulp and paper production.


2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1532-S1540
Author(s):  
Shibly Shadik Mir Md ◽  
Ming Yeng Chan ◽  
Seong Chun Koay

Issues pertaining to deforestation, environmental pollution and natural wastes are increasing day by day. These issues can be resolved by introducing a new composite material, in which natural waste is used as fibre and as a replacement of wood plastic composite. The different lengths (3, 6 and 9 cm) of corn husk fibre filled polyester composites were produced using the vacuum infusion method. Several mechanical properties of these polyester composites, such as tensile and flexural properties, were evaluated. The results revealed that both the tensile and flexural properties of polyester composites increased with increment of corn husk fibre length from 3 to 6 cm. However, the results decreased for 9 cm of fibre length filled composites. Similar trends were recorded after alkali treatment of the corn husk fibre filled polyester composites. The alkali treatment with sodium hydroxide had improved the tensile strength (33%), Young’s modulus (23%), elongation (14%), flexural strength (42%) and flexural modulus (8.5%) of the polyester/corn husk fibre composites with 6 cm of fibre length by enhancing the mechanical interlocking bonding between treated corn husk fibres and polyester.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022014
Author(s):  
Chenyan Zhao ◽  
Tianyu Li ◽  
Wenjun Li

Abstract The analysis on mechanical properties of ice-composite focus on three aspects. The first is the novelty of the material. As an ice composite, the selection and placement of different fibres will have a crucial impact on the material and properties of the composite. Regarding the type of fibre,10 groups of controlled experiments are designed totally with materials commonly used in daily life, with three samples in each group and 33 samples in total. The fillers include cloth of socks, polyester fibre plastic bags (hard, soft, garbage sorting bags), pulp, hemp ropes, nylon ropes, non-woven fabrics, bamboo fibre, and the mask material applied in preventing COVID-19 specially. Considering that in most cases, the mask is a one-off, it is also creatively thought of using disinfected waste masks as reinforcement material for the ice-composite to reduce the waste of recyclable materials. Considering that disposable masks commonly used in this scheme usually consist of an inner and outer layer, as shown in the figure. The applicability of these two fibres was investigated by adding these materials prepared by the inner and outer layers of masks into the Ice-composite. In order to systematically study the influence of different variables on ice composites, different control groups in four directions are set: fibre type, fibre content, fibre length, and fibre orientation. For each control group, more than 2 types of materials were tested and relevant parameters were analysed according to the results. In addition, as a result of the experiment environment to room temperature, and in the process of operation, hands and other body parts contact could accelerate the melting of the ice, leading to the change of the sample properties. To conquer this problem, a blank control group which contains only ice at room temperature is set to make a comparison and provide a standard for determining the improvement of fibre added ice-composite. (The parameters measured in this sample will be used as correction factors in the experiment so that the real properties of the resulting ice composite can be measured.) Considering the influence of fibre orientation on material properties, an extra control group for the same kind of materials is set: one group is stirred evenly with the matrix, and the other group is placed vertically along the direction of the box. In terms of testing, the mechanical properties of the products are mainly tested, including Stiffness Properties, Elastic property. Three related physical properties, the elastic modulus E, the shear modulus G, and the Poisson’s ratio V, are measured to evaluate. Tensile and compressive strength in X, Y, and Z directions are also considered. In particular, different evaluation systems are established for uniform and multilayer unidirectional composite (longitudinal). In addition, a series of properties, such as bend strength, impact strength, and fracture toughness are measured. Considering the limits of daily measuring instruments, the melting of ice in the operation process affects the measurement of normal strain and the fact that the strain of ice composite material is relatively small, it is creatively thought to use a laser pointer and cosmetic mirror which are common in the multimedia classroom of the university campus to magnify the tiny deformation to facilitate measurement. In terms of the result presentation, it is tried to use broken line charts to show the correlation between various variables and material properties. Finally, the error sources existing in the experiment has been summarized and some improvement plans are proposed according to the existing problems of this experiment.


IAWA Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Qian-Qian Jiang ◽  
Zhang-Chao Ding ◽  
Chang-Qing Lu ◽  
Jun-Lan Gao ◽  
Yan Yan ◽  
...  

Abstract The anatomical structure of the bamboo stem is characterized by vascular bundles comprising the xylem, phloem, and sclerenchyma fibrous sheaths as well as parenchymatous ground tissue in which the vascular bundles are embedded. The composition of the stem is the main factor influencing the anatomical characteristics of circular bamboo, which shows considerable variation in the radial direction. However, most species of Chimonobambusa have square stems. Here, we tested the hypothesis that circumferential variation exists in the cross-sectional anatomy of this species. We analysed fibre morphology and the cross-sectional structural characteristics of vascular bundles of Chimonobambusa quadrangularis (Fenzi) Makino and their associated circumferential and radial variation in cross-sections. Microscopic observations were conducted to identify, measure, and compare fibre morphology and the structural characteristics of vascular bundles, including both circumferential and radial anatomical variation. Vascular bundles occurred as undifferentiated, semi-differentiated, and open types in the radial direction with no changes in the circumferential direction. The average length, width, and ratio of fibre length to width were 1463.6 μm, 12.3 μm and 119.3 in the corner region, and 1452.7 μm, 12.8 μm, and 111.3 in the side region, and there were significant circumferential and radial differences in length, width, and the ratio of fibre length to width (). The circumferential variation in density of vascular bundles, the ratio of fibre length to width, radial to tangential diameter ratio of vascular bundles, and the proportion of sclerenchyma were greater in the corner regions than the side regions. The variation in fibre width and the proportion of parenchyma were greater in the corner regions than in the side regions. The density of vascular bundles and proportions of sclerenchyma were greater in the outer stem compared to the inner stem, whereas the length, width, and ratio of fibre length to width were greatest in the centre compared to the inner and outer zones. Circumferential variation of the density of vascular bundles, fibre length and fibre width occurred in the central and outer stem zones. These findings confirm that there are significant anatomical variations in both the circumferential and radial directions and provide a scientific basis for the rational use of Chimonobambusa quadrangularis.


Sign in / Sign up

Export Citation Format

Share Document