scholarly journals New innovations in pavement materials and engineering: A review on pavement engineering research 2021

Author(s):  
Jiaqi Chen ◽  
Hancheng Dan ◽  
Yongjie Ding ◽  
Yangming Gao ◽  
Meng Guo ◽  
...  
Author(s):  
Gerrit Jordaan ◽  
Wynand J vdM Steyn

Nano-scale organofunctional silanes have been developed, tested and successfully applied to protect stone buildings in Europe against climatic effects since the 1860s. The same nanotechnologies can also be used in pavement engineering to create strong chemical bonds between a stabilising agent and the material substrata. The attachment of the organofunctional silane to a material also makes the surface of the material hydrophobic, reducing future chemical weathering. These properties allow naturally available materials to be used in any pavement layer at a low risk. In the built environment, scientists soon determined that the successful use of an organo-silane depends on the type and condition of the stone to be treated. The same principles apply to the implementation of applicable nanotechnologies in pavement engineering. Understanding the basic chemistry determining the properties of the stabilising agent and the organofunctional modifying agent and the chemical interaction with the primary and secondary minerals of the material are essential for the successful application of these technologies in pavement engineering. This paper explains some basic chemistry which fundamentally influences engineering outputs that can be achieved using New-age (Nano) Modified Emulsions (NME) stabilising agents with naturally available material in all road pavement TRANSLATE with x English ArabicHebrewPolish BulgarianHindiPortuguese CatalanHmong DawRomanian Chinese SimplifiedHungarianRussian Chinese TraditionalIndonesianSlovak CzechItalianSlovenian DanishJapaneseSpanish DutchKlingonSwedish EnglishKoreanThai EstonianLatvianTurkish FinnishLithuanianUkrainian FrenchMalayUrdu GermanMalteseVietnamese GreekNorwegianWelsh Haitian CreolePersian TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back TRANSLATE with x English ArabicHebrewPolish BulgarianHindiPortuguese CatalanHmong DawRomanian Chinese SimplifiedHungarianRussian Chinese TraditionalIndonesianSlovak CzechItalianSlovenian DanishJapaneseSpanish DutchKlingonSwedish EnglishKoreanThai EstonianLatvianTurkish FinnishLithuanianUkrainian FrenchMalayUrdu GermanMalteseVietnamese GreekNorwegianWelsh Haitian CreolePersian TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back TRANSLATE with x English ArabicHebrewPolish BulgarianHindiPortuguese CatalanHmong DawRomanian Chinese SimplifiedHungarianRussian Chinese TraditionalIndonesianSlovak CzechItalianSlovenian DanishJapaneseSpanish DutchKlingonSwedish EnglishKoreanThai EstonianLatvianTurkish FinnishLithuanianUkrainian FrenchMalayUrdu GermanMalteseVietnamese GreekNorwegianWelsh Haitian CreolePersian TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1231
Author(s):  
Kuanghuai Wu ◽  
Xiaoyu Liu ◽  
Xu Cai ◽  
Wenke Huang ◽  
Jinlou Yu ◽  
...  

Semi-flexible pavement is widely used in pavement engineering due to its excellent rutting resistance; however, it mainly fails due to cracking. Therefore, it is important to understand the properties of the aggregate–mortar–asphalt interfacial transition zone, to better understand the cracking mechanism of the semi-flexible pavement. In this work, we used pull-off tests and digital image analysis technology to compare and analyze the interfacial tensile strength and granite–bitumen–mortar interactions in three types of asphalt (70# matrix asphalt, PG76-22 modified asphalt and S-HV modified asphalt) at different curing ages. The analysis results showed that, for the three different bitumen materials, with settled mortar, the peak interfacial tensile strength values all occurred at approximately 14 d of curing. In addition, the order of the tensile strength followed the order of asphalt penetration degree; the order of the interfacial water damage resistance from weak to strong was 70# asphalt cementation specimen, PG76-22 modified asphalt cementation specimen, and S-HV modified asphalt cementation specimen. The results of this analysis highlight the original contributions of the optimum curing time for the composite interface of semi-flexible pavement materials prepared with different asphalts to reach optimum crack resistance.


2021 ◽  
Vol 11 (20) ◽  
pp. 9699
Author(s):  
Gerrit J. Jordaan ◽  
Wynand J. vdM. Steyn

Nanoscale organofunctional silanes have been developed, tested and successfully applied to protect stone buildings in Europe against climatic effects since the 1860s. The same nanotechnologies can also be used in pavement engineering to create strong chemical bonds between a stabilising agent and granular material. The attachment of the organofunctional silane to a material also changes the surface of the material to become hydrophobic, thereby considerably reducing future chemical weathering. These properties allow naturally available materials to be used in any pavement layer at a low risk. In the built environment, scientists soon determined that the successful use of an organo-silane depends on the type and condition of the stone to be treated. The same principles apply to the implementation of applicable nanotechnologies in pavement engineering. Understanding the basic chemistry, determining the properties of the stabilising agent and the organofunctional modifying agent and the chemical interaction with the primary and secondary minerals of the material are essential for the successful application of these technologies in pavement engineering. This paper explains some basic chemistry, which fundamentally influences engineering outputs that can be achieved using New-age (Nano) Modified Emulsions (NME) stabilising agents with naturally available granular materials in all road pavement layers below the surfacing.


Author(s):  
Gerrit Jordaan ◽  
Wynand J vdM Steyn

Nano-scale organofunctional silanes have been developed, tested and successfully applied to protect stone buildings in Europe against climatic effects since the 1860s. The same nanotechnologies can also be used in pavement engineering to create strong chemical bonds between a stabilising agent and the material substrata. The attachment of the organofunctional silane to a material also makes the surface of the material hydrophobic, reducing future chemical weathering. These properties allow naturally available materials to be used in any pavement layer at a low risk. In the built environment, scientists soon determined that the successful use of an organo-silane depends on the type and condition of the stone to be treated. The same principles apply to the implementation of applicable nanotechnologies in pavement engineering. Understanding the basic chemistry determining the properties of the stabilising agent and the organofunctional modifying agent and the chemical interaction with the primary and secondary minerals of the material are essential for the successful application of these technologies in pavement engineering. This paper explains some basic chemistry which fundamentally influences engineering outputs that can be achieved using New-age (Nano) Modified Emulsions (NME) stabilising agents with naturally available material in all road pavement TRANSLATE with x English ArabicHebrewPolish BulgarianHindiPortuguese CatalanHmong DawRomanian Chinese SimplifiedHungarianRussian Chinese TraditionalIndonesianSlovak CzechItalianSlovenian DanishJapaneseSpanish DutchKlingonSwedish EnglishKoreanThai EstonianLatvianTurkish FinnishLithuanianUkrainian FrenchMalayUrdu GermanMalteseVietnamese GreekNorwegianWelsh Haitian CreolePersian TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back TRANSLATE with x English ArabicHebrewPolish BulgarianHindiPortuguese CatalanHmong DawRomanian Chinese SimplifiedHungarianRussian Chinese TraditionalIndonesianSlovak CzechItalianSlovenian DanishJapaneseSpanish DutchKlingonSwedish EnglishKoreanThai EstonianLatvianTurkish FinnishLithuanianUkrainian FrenchMalayUrdu GermanMalteseVietnamese GreekNorwegianWelsh Haitian CreolePersian TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back


Author(s):  
Bin Hong ◽  
Guoyang Lu ◽  
Tianshuai Li ◽  
Jiao Lin ◽  
Dawei Wang ◽  
...  

AbstractWith the rapid development of society and industry, novel technologies and materials related to pavement engineering are constantly emerging. However, with the continuous improvement of people’s demands, pavement engineering also faces more and more enormous challenges that the pavement materials must have excellent engineering properties and environmental benefits. Meanwhile, the intelligence is the mainstream development direction of modern society, and the development trend of future transportation infrastructure. Materials Genome Initiative, a program for the development of new materials that materials design is conducted by up-front simulations and predictions, followed by key validation experiments, the rapid development of science and technology and AI toolset (big data and machine learning) provide new opportunities and strong technical supports for pavement materials development that shorten the development-application cycle of new material, reduce cost and promote the application of new carriers such as intelligent sensing components in transportation engineering, to achieve the intelligence of transportation engineering. However, traditional pavement materials possess several unavoidable shortcomings, indicating that it is exceedingly difficult for them to meet the above requirements for future pavement materials. Therefore, the development of future new pavement materials, which can be designed on-demand as well as possessing enough mechanical properties, high durability, practical functionality, and high environmental protection, is urgent. In recent years, as a “designable” polymer material with various excellent engineering performances, polyurethane (PU) has been widely applied in pavement practices by changing the chemical structures of raw materials and their mix proportions, for instance pavement repairing material, permeable pavement material, tunnel paving material and bridge deck paving materials, etc. Although PU material has been widely applied in practices, a systematically summarization is still quite necessary for further understanding the working mechanism of PU materials and optimization it’s engineering applications. To fill the gap, this article puts forward the special requirements for future transportation infrastructure materials, and introduces the basic properties and working mechanism of PU materials in order to make up for the defects of conventional road materials. Based on this, this article also summarizes the engineering performances and environmental benefits of applying PU as the binder for different road infrastructure materials in recent years. Considering the gene-editable nature of polyurethane, further research of the on-demand design principles of PU pavement materials is recommended. The establishment of raw material gene database, material terminal performance database and their structure-activity relationship are highlighted. The current research is essential to the practice guidance and further optimization of the PU materials for road infrastructures, which in line with the future Carbon neutral policy.


1957 ◽  
Vol 2 (3) ◽  
pp. 62-62
Author(s):  
LEONARD C. MEAD

Sign in / Sign up

Export Citation Format

Share Document