scholarly journals Performance and Fracture Analysis of Composite Interfaces for Semi-Flexible Pavement

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1231
Author(s):  
Kuanghuai Wu ◽  
Xiaoyu Liu ◽  
Xu Cai ◽  
Wenke Huang ◽  
Jinlou Yu ◽  
...  

Semi-flexible pavement is widely used in pavement engineering due to its excellent rutting resistance; however, it mainly fails due to cracking. Therefore, it is important to understand the properties of the aggregate–mortar–asphalt interfacial transition zone, to better understand the cracking mechanism of the semi-flexible pavement. In this work, we used pull-off tests and digital image analysis technology to compare and analyze the interfacial tensile strength and granite–bitumen–mortar interactions in three types of asphalt (70# matrix asphalt, PG76-22 modified asphalt and S-HV modified asphalt) at different curing ages. The analysis results showed that, for the three different bitumen materials, with settled mortar, the peak interfacial tensile strength values all occurred at approximately 14 d of curing. In addition, the order of the tensile strength followed the order of asphalt penetration degree; the order of the interfacial water damage resistance from weak to strong was 70# asphalt cementation specimen, PG76-22 modified asphalt cementation specimen, and S-HV modified asphalt cementation specimen. The results of this analysis highlight the original contributions of the optimum curing time for the composite interface of semi-flexible pavement materials prepared with different asphalts to reach optimum crack resistance.

2020 ◽  
Vol 982 ◽  
pp. 195-200
Author(s):  
Abdullah Al Mamun ◽  
Okan Sirin

Nanotechnology has contributed significantly to different subfields of the construction industry, including asphalt pavement engineering. The improved properties and new functionalities of the nanomaterials have provided different desired properties of asphalt. In this study, the effectiveness of multi-walled carbon nanotubes (MWCNT) in resisting the oxidation of polymer-modified asphalt was measured. A total of three different percentages (0.5%, 1%, and 1.5%) of MWCNT were used to modify the Styrene-Butadiene (SB) and styrene–butadiene–styrene (SBS) modified asphalt (4% and 5%). The laboratory oxidized asphalt samples were evaluated by an atomic force microscopy machine. The oxidation of the polymer-MWCNT modified asphalt is measured by simulating the existing functional group of the asphalt and as a function of the adhesive force. It is observed that the use of MWCNT in SB and SBS can increase the resistance to oxidation.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hui Yao ◽  
Yiran Wang ◽  
Junfu Liu ◽  
Mei Xu ◽  
Pengrui Ma ◽  
...  

Lignin is the second-largest plant polymer on Earth after cellulose. About 98% of lignin produced in the papermaking and pulping industry is used for combustion heating or power generation. Less than 2% of lignin is used in more valuable fields, mainly in the formulation of dispersants, adhesives, and surfactants. Asphalt is one of the most important materials in pavement engineering. It is a dark brown complex mixture composed of hydrocarbons with different molecular weights and their non-metallic derivatives. Because the chemical structure of lignin is similar to that of asphalt, it is a carbon-based hydrocarbon material. More researchers studied the application of lignin in pavement engineering. In this paper, the structure, application, and extraction technology of lignin were summarized. This is a review article describing the different applications of lignin in pavement engineering and exploring the prospects of the application. There are three main types of pavement materials that can be used for lignin in pavement engineering, which are asphalt, asphalt mixture, and roadbed soil. In asphalt, lignin can be used as a modifier, extender, emulsifier, antioxidant, and coupling agent. In asphalt mixtures, lignin can be used as an additive. In road base soils, lignin can be used as a soil stabilizer. Furthermore, the article analyzed the application effects of lignin from the life cycle assessment. The conclusions suggest that lignin-modified asphalt exhibits more viscosity and hardness, and its high-temperature resistance and rutting resistance can be significantly improved compared with conventional asphalt. In addition, some lignin-modified asphalt binders exhibit reduced low-temperature crack resistance and fatigue resistance, which can be adjusted and selected according to the climate change in different regions. The performance of lignin as an asphalt mixture additive and asphalt extender has been proved to be feasible. Lignin can also produce good mechanical properties as well as environmental benefits as a soil stabilizer. In summary, lignin plays an important role in asphalt pavement and roadbed soil, and it is likely to be a development trend in the future due to its environmental friendliness and low cost. More research is needed to generalize the application of lignin in pavement engineering.


2014 ◽  
Vol 941-944 ◽  
pp. 324-328 ◽  
Author(s):  
Zhong Ping Yao ◽  
Meng Li ◽  
Wei Liu ◽  
Zhen Bei Chen ◽  
Rong Hui Zhang

Use polyurethane rubber composite modified asphalt.Through the Marshall test and rutting test, test of polyurethane rubber asphalt mixture high temperature stability, low temperature crack resistance and water damage resistance, verify the composite modification advantages.


Author(s):  
A. Samy Noureldin ◽  
Essam Sharaf ◽  
Abdulrahim Arafah ◽  
Faisal Al-Sugair

Explicit applications of reliability in pavement engineering have been of interest to pavement engineers for the last 10 years. Variabilities in parameters affecting pavement design performance result in variability in pavement performance prediction and thus affect the reliability of how long the pavement will last. Rational quantification of those variabilities is essential for incorporating reliability and selecting the proper factors of safety in the pavement design performance process. The prevailing methodology in Saudi Arabia of quantifying the variability in pavement performance due to the variabilities of the parameters affecting that performance is demonstrated. Factors of safety for flexible pavement design at various reliability levels and based on those prevailing variabilities are presented. These factors of safety are recommended for flexible pavement design in Saudi Arabia.


Author(s):  
Tamanna Jerin ◽  
Nazia Jahan ◽  
Jayisha D. Jaya ◽  
Nafis A. Sami ◽  
Mohammad I. Hossain ◽  
...  

2014 ◽  
Vol 505-506 ◽  
pp. 260-264
Author(s):  
Bai Lin Wang ◽  
Min Nan Zheng ◽  
Jie Zhang ◽  
Jiu Guang Geng

SBS modified asphalt has good performance of high temperature and low temperature, it is widely used in high-grade asphalt pavement engineering. But the aging will influence the using performance of asphalt, we select four dosages of modifier and aging for different time, Experimental results show that with the increase of aging time, asphalt penetration is reduced, softening point is elevated, ductility is decreased. According to the macro physical index analysis, find that SBS modified asphalt’s anti-aging performance is improved.


2011 ◽  
Vol 25 (1) ◽  
pp. 195-200 ◽  
Author(s):  
Shu Wei Goh ◽  
Michelle Akin ◽  
Zhanping You ◽  
Xianming Shi

Sign in / Sign up

Export Citation Format

Share Document