Volcanic emissions from Popocatépetl volcano, Mexico, quantified using Moderate Resolution Imaging Spectroradiometer (MODIS) infrared data: A case study of the December 2000–January 2001 emissions

2008 ◽  
Vol 170 (1-2) ◽  
pp. 76-85 ◽  
Author(s):  
M.A. Matiella Novak ◽  
I.M. Watson ◽  
H. Delgado-Granados ◽  
W.I. Rose ◽  
L. Cárdenas-González ◽  
...  
2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Miro Govedarica ◽  
Dušan Jovanović ◽  
Filip Sabo ◽  
Mirko Borisov ◽  
Milan Vrtunski ◽  
...  

AbstractThe aim of the paper is to compare Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (


2015 ◽  
Vol 8 (12) ◽  
pp. 5237-5249 ◽  
Author(s):  
E. Jäkel ◽  
B. Mey ◽  
R. Levy ◽  
X. Gu ◽  
T. Yu ◽  
...  

Abstract. MODIS (MOderate-resolution Imaging Spectroradiometer) retrievals of aerosol optical depth (AOD) are biased over urban areas, primarily because the reflectance characteristics of urban surfaces are different than that assumed by the retrieval algorithm. Specifically, the operational "dark-target" retrieval is tuned towards vegetated (dark) surfaces and assumes a spectral relationship to estimate the surface reflectance in blue and red wavelengths. From airborne measurements of surface reflectance over the city of Zhongshan, China, were collected that could replace the assumptions within the MODIS retrieval algorithm. The subsequent impact was tested upon two versions of the operational algorithm, Collections 5 and 6 (C5 and C6). AOD retrieval results of the operational and modified algorithms were compared for a specific case study over Zhongshan to show minor differences between them all. However, the Zhongshan-based spectral surface relationship was applied to a much larger urban sample, specifically to the MODIS data taken over Beijing between 2010 and 2014. These results were compared directly to ground-based AERONET (AErosol RObotic NETwork) measurements of AOD. A significant reduction of the differences between the AOD retrieved by the modified algorithms and AERONET was found, whereby the mean difference decreased from 0.27±0.14 for the operational C5 and 0.19±0.12 for the operational C6 to 0.10±0.15 and -0.02±0.17 by using the modified C5 and C6 retrievals. Since the modified algorithms assume a higher contribution by the surface to the total measured reflectance from MODIS, consequently the overestimation of AOD by the operational methods is reduced. Furthermore, the sensitivity of the MODIS AOD retrieval with respect to different surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectance data were used as input for the retrieval methods. It was shown that the operational MODIS AOD retrieval over land reproduces the AOD reference input of 0.85 for dark surface types (retrieved AOD = 0.87 (C5)). An overestimation of AOD = 0.99 is found for urban surfaces, whereas the modified C5 algorithm shows a good performance with a retrieved value of AOD = 0.86.


2012 ◽  
Vol 51 (10) ◽  
pp. 1811-1822 ◽  
Author(s):  
Kristopher M. Bedka ◽  
Richard Dworak ◽  
Jason Brunner ◽  
Wayne Feltz

AbstractTwo satellite infrared-based overshooting convective cloud-top (OT) detection methods have recently been described in the literature: 1) the 11-μm infrared window channel texture (IRW texture) method, which uses IRW channel brightness temperature (BT) spatial gradients and thresholds, and 2) the water vapor minus IRW BT difference (WV-IRW BTD). While both methods show good performance in published case study examples, it is important to quantitatively validate these methods relative to overshooting top events across the globe. Unfortunately, no overshooting top database currently exists that could be used in such study. This study examines National Aeronautics and Space Administration CloudSat Cloud Profiling Radar data to develop an OT detection validation database that is used to evaluate the IRW-texture and WV-IRW BTD OT detection methods. CloudSat data were manually examined over a 1.5-yr period to identify cases in which the cloud top penetrates above the tropopause height defined by a numerical weather prediction model and the surrounding cirrus anvil cloud top, producing 111 confirmed overshooting top events. When applied to Moderate Resolution Imaging Spectroradiometer (MODIS)-based Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced Baseline Imager proxy data, the IRW-texture (WV-IRW BTD) method offered a 76% (96%) probability of OT detection (POD) and 16% (81%) false-alarm ratio. Case study examples show that WV-IRW BTD > 0 K identifies much of the deep convective cloud top, while the IRW-texture method focuses only on regions with a spatial scale near that of commonly observed OTs. The POD decreases by 20% when IRW-texture is applied to current geostationary imager data, highlighting the importance of imager spatial resolution for observing and detecting OT regions.


2011 ◽  
Vol 30 ◽  
pp. 23-29 ◽  
Author(s):  
D. Hadjimitsis ◽  
Z. Mitraka ◽  
I. Gazani ◽  
A. Retalis ◽  
N. Chrysoulakis ◽  
...  

Abstract. In this paper, the atmospheric precipitable water (PW) over the area of Cyprus was estimated by means of Advanced Very High Resolution Radiometer (AVHRR) thermal channels brightness temperature difference (ΔT). The AVHRR derived ΔT was calculated in a grid of 5 × 5 km cells; the corresponding PW value in each grid cell was extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 product (near-infrared algorithm). Once the PW – ΔT relationship coefficients corresponding to the area of Cyprus were calculated, the relationship was applied to AVHRR data for one month period. Radiosonde derived PW values, as well as MODIS independent PW values were used to validate the estimations and a good agreement was noted.


Sign in / Sign up

Export Citation Format

Share Document