scholarly journals A complex magmatic system beneath the Kissomlyó monogenetic volcano (western Pannonian Basin): evidence from mineral textures, zoning and chemistry

2015 ◽  
Vol 301 ◽  
pp. 38-55 ◽  
Author(s):  
M. Éva Jankovics ◽  
Szabolcs Harangi ◽  
Károly Németh ◽  
Balázs Kiss ◽  
Theodoros Ntaflos
2010 ◽  
Vol 2 (3) ◽  
Author(s):  
Gábor Kereszturi ◽  
Gábor Csillag ◽  
Károly Németh ◽  
Krisztina Sebe ◽  
Kadosa Balogh ◽  
...  

AbstractBondoró Volcanic Complex (shortly Bondoró) is one of the most complex eruption centre of Bakony-Balaton Highland Volcanic Field, which made up from basaltic pyroclastics sequences, a capping confined lava field (~4 km2) and an additional scoria cone. Here we document and describe the main evolutional phases of the Bondoró on the basis of facies analysis, drill core descriptions and geomorphic studies and provide a general model for this complex monogenetic volcano. Based on the distinguished 13 individual volcanic facies, we infer that the eruption history of Bondoró contained several stages including initial phreatomagmatic eruptions, Strombolian-type scoria cones forming as well as effusive phases. The existing and newly obtained K-Ar radiometric data have confirmed that the entire formation of the Bondoró volcano finished at about 2.3 Ma ago, and the time of its onset cannot be older than 3.8 Ma. Still K-Ar ages on neighbouring formations (e.g. Kab-hegy, Agár-teto) do not exclude a long-lasting eruptive period with multiple eruptions and potential rejuvenation of volcanic activity in the same place indicating stable melt production beneath this location. The prolonged volcanic activity and the complex volcanic facies architecture of Bondoró suggest that this volcano is a polycyclic volcano, composed of at least two monogenetic volcanoes formed more or less in the same place, each erupted through distinct, but short lived eruption episodes. The total estimated eruption volume, the volcanic facies characteristics and geomorphology also suggests that Bondoró is rather a small-volume polycyclic basaltic volcano than a polygenetic one and can be interpreted as a nested monogenetic volcanic complex with multiple eruption episodes. It seems that Bondoró is rather a “rule” than an “exception” in regard of its polycyclic nature not only among the volcanoes of the Bakony-Balaton Highland Volcanic Field but also in the Neogene basaltic volcanoes of the Pannonian Basin.


2014 ◽  
Vol 6 (2.2) ◽  
pp. 1-98 ◽  
Author(s):  
Maurizio Mazzucchelli ◽  
James E. Quick ◽  
Silvano Sinigoi ◽  
Alberto Zanetti ◽  
Tommaso Giovanardi
Keyword(s):  

2011 ◽  
Vol 54 (1-2) ◽  
pp. 5-13
Author(s):  
József Fekete ◽  
Csanád Sajgó
Keyword(s):  

2021 ◽  
Vol 565 ◽  
pp. 116965
Author(s):  
R. Lukács ◽  
L. Caricchi ◽  
A.K. Schmitt ◽  
O. Bachmann ◽  
O. Karakas ◽  
...  

Resources ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 31
Author(s):  
Stanislav Jacko ◽  
Roman Farkašovský ◽  
Igor Ďuriška ◽  
Barbora Ščerbáková ◽  
Kristína Bátorová

The Pannonian basin is a major geothermal heat system in Central Europe. Its peripheral basin, the East Slovakian basin, is an example of a geothermal structure with a linear, directed heat flow ranging from 90 to 100 mW/m2 from west to east. However, the use of the geothermal source is limited by several critical tectono-geologic factors: (a) Tectonics, and the associated disintegration of the aquifer block by multiple deformations during the pre-Paleogene, mainly Miocene, period. The main discontinuities of NW-SE and N-S direction negatively affect the permeability of the aquifer environment. For utilization, minor NE-SW dilatation open fractures are important, which have been developed by sinistral transtension on N–S faults and accelerated normal movements to the southeast. (b) Hydrogeologically, the geothermal structure is accommodated by three water types, namely, Na-HCO3 with 10.9 g·L−1 mineralization (in the north), the Ca-Mg-HCO3 with 0.5–4.5 g·L−1 mineralization (in the west), and Na-Cl water type containing 26.8–33.4 g·L−1 mineralization (in the southwest). The chemical composition of the water is influenced by the Middle Triassic dolomite aquifer, as well as by infiltration of saline solutions and meteoric waters along with open fractures/faults. (c) Geothermally anomalous heat flow of 123–129 °C with 170 L/s total flow near the Slanské vchy volcanic chain seems to be the perspective for heat production.


Sign in / Sign up

Export Citation Format

Share Document