scoria cone
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 35)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Rosa Anna Corsaro ◽  
Stefano Branca ◽  
Emanuela De Beni ◽  
Jean-Claude Tanguy

The structure of an active volcano is highly dependent on the interplay between the geodynamic context, the tectonic assessment as well as the magmatic processes in the plumbing system. This complex scenario, widely explored at Etna during the last 40 years, is nevertheless incomplete for the recent historical activity. In 1763 two eruptions occurred along the west flank of the volcano. There, an eruption started on 6th February and formed the scoria cone of Mt. Nuovo and a roughly 4-km-long lava flow field. Another small scoria cone, known as Mt. Mezza Luna, is not dated in historical sources. It is located just 1 km eastward of Mt. Nuovo and produced a 700 m long flow field. We focused on the activity of Mts. Nuovo and Mezza Luna for several reasons. First, the old geological maps and volcanological catalogues indicate that Mt. Mezza Luna and Mt. Nuovo cones were formed during the same eruption, while historical sources described Mt. Nuovo’s activity as producing a single scoria cone and do not give information about the formation of Mt. Mezza Luna. Second, petrologic studies highlight that the products of Mt. Mezza Luna are similar to the sub-aphyric Etna basalts; they preserve a composition relatively close to Etna primitive magma which were also erupted in 1763, during La Montagnola flank eruption, which took place along the South Rift of the volcano. Third, the two scoria cones built up along the so-called West Rift of Etna, which represents one of the main magma-ascent zones of the volcano. We applied a multidisciplinary approach that could prove useful for other volcanoes whose past activity is still to be reconstructed. Critical reviews of historical records, new field surveys, petrochemical analyses and petrologic modelling of the Mts. Nuovo and Mezza Luna eruptions have been integrated with literature data. The results allowed improving the stratigraphic record of historical eruptions reported in the Mount Etna Geological map, modelling the sub-volcanic magmatic processes responsible for magma differentiation, and evidencing recurrent mechanisms of magma transfer at Etna. Indeed, the intrusion of a deep primitive magma along the South Rift is often associated with the activation of other rift zones that erupt residual magma stored in the shallow plumbing system.


2021 ◽  
Author(s):  
Seigo Miyamoto ◽  
Shogo Nagahara ◽  
Kunihiro Morishima ◽  
Toshiyuki Nakano ◽  
Masato Koyama ◽  
...  

Abstract. One of the key challenges for muographic studies is to reveal the detailed 3D density structure of a volcano by increasing the number of observation directions. 3D density imaging by multi-directional muography requires that the individual differences in the performance of the installed muon detectors are small and that the results from each detector can be derived without any bias in the data analysis. Here we describe a pilot muographic study of the Izu–Omuroyama scoria cone in Shizuoka Prefecture, Japan, from 11 directions, using a new nuclear emulsion detector design optimized for quick installation in the field. We describe the details of the data analysis and present a validation of the results. The Izu–Omuroyama scoria cone is an ideal target for the first multi-directional muographic study, given its expected internal density structure and the topography around the cone. We optimized the design of the nuclear emulsion detector for rapid installation at multiple observation sites in the field, and installed these at 11 sites around the volcano. The images in the developed emulsion films were digitized into segmented tracks with a high-speed automated readout system. The muon tracks in each emulsion detector were then reconstructed. After the track selection, including straightness filtering, the detection efficiency of the muons was estimated. Finally, the density distributions in 2D angular space were derived for each observation site by using a muon flux and attenuation models. The observed muon flux was compared with the expected value in the free sky, and is 88 % ± 4 % in the forward direction and 92 % ± 2 % in the backward direction. The density values were validated by comparison with the values obtained from gravity measurements, and are broadly consistent, except for one site. The excess density at this one site may indicate that the density inside the cone is non-axisymmetric, which is consistent with a previous geological study.


2021 ◽  
Vol 83 (11) ◽  
Author(s):  
Cristian Montanaro ◽  
Anette Kærgaard Mortensen ◽  
Tobias B. Weisenberger ◽  
Donald B. Dingwell ◽  
Bettina Scheu

AbstractKrafla central volcano in Iceland has experienced numerous basaltic fissure eruptions through its history, the most recent examples being the Mývatn (1724‒1729) and Krafla Fires (1975–1984). The Mývatn Fires opened with a steam-driven eruption that produced the Víti crater. A magmatic intrusion has been inferred as the trigger perturbing the geothermal field hosting Víti, but the cause(s) of the explosive response remain uncertain. Here, we present a detailed stratigraphic reconstruction of the breccia erupted from Víti crater, characterize the lithologies involved in the explosions, reconstruct the pre-eruptive setting, fingerprint the eruption trigger and source depth, and reveal the eruption mechanisms. Our results suggest that the Víti eruption can be classified as a magmatic-hydrothermal type and that it was a complex event with three eruption phases. The injection of rhyolite below a pre-existing convecting hydrothermal system likely triggered the Víti eruption. Heating and pressurization of shallow geothermal fluid initiated disruption of a scoria cone “cap” via an initial series of small explosions involving a pre-existing altered weak zone, with ejection of fragments from at least 60-m depth. This event was superseded by larger, broader, and dominantly shallow explosions (~ 200 m depth) driven by decompression of hydrothermal fluids within highly porous, poorly compacted tuffaceous hyaloclastite. This second phase was triggered when pressurized fluids broke through the scoria cone complex “cap”. At the same time, deep-rooted explosions (~ 1-km depth) began to feed the eruption with large inputs of fragmented rhyolitic juvenile and host rock from a deeper zone. Shallow explosions enlarging the crater dominated the final phase. Our results indicate that at Krafla, as in similar geological contexts, shallow and thin hyaloclastite sequences hosting hot geothermal fluids and capped by low-permeability lithologies (e.g. altered scoria cone complex and/or massive, thick lava flow sequence) are susceptible to explosive failure in the case of shallow magmatic intrusion(s).


2021 ◽  
Vol 38 (2) ◽  
pp. 101-121
Author(s):  
Marie-Noëlle Guilbaud ◽  
Athziri Hernández-Jiménez ◽  
Claus Siebe ◽  
Sergio Salinas

Scoria cones are abundant in most volcanic fields on Earth, such as the Michoacán-Guanajuato Volcanic Field, in the central-western sector of the Trans-Mexican Volcanic Belt. However, there are few in-depth studies on their eruptive style and controlling factors, despite of their diversity in shape and composition which implies a wide range of hazards. Here, we present results of morphologic, stratigraphic, sedimentary, petrographic, and geochemical studies of the prominent Las Cabras scoria cone located west of the Zacapu lacustrine basin in the center of the Michoacán-Guanajuato Volcanic Field. This basaltic andesitic to andesitic volcano formed between 27 and 26 kyrs BP on the steep slopes (>10º) of the lava shield of El Tule volcano. Over time, its dominant eruptive style changed from Strombolian to effusive. Initial explosive activity built a 170-m-high scoria cone and deposited thick tephra fallout on the surrounding sloping terrain. Structures in the deposits indicate that early friable fine-grained tephra underwent significant erosion due to syn-eruptive heavy rain coupled with the sloping nature of the underlying ground. This erosion generated lahars that very likely reached the Zacapu lake based on the pre-eruptive topography. As the explosivity dropped, lava was emitted from the base of the cone first to the S and SE, forming a thick, viscous lobe that filled a pre-existing E-W valley. The flow direction then deviated to the N and NE, to form thinner, less-viscous lobes fed from the vent by an open-channel. The lavas are covered by hummocks made of agglutinates and bombs that indicate that the eruption terminated by catastrophic collapse of the SE sector of the cone, possibly triggered by the intrusion of magma within the cone, which destabilized its downslope segment. The sudden flank failure was potentially associated with a late effusive event and the hummocks may have been carried away by the lava surge. Whole-rock chemical variations and crystal disequilibrium textures point toward a complex magma feeding system, involving mixing and mingling between different magma batches. This study shows that the formation of scoria cones on a terrain with a marked slope (>10°) has profound impacts on the eruption dynamics and related hazards due to its effect on cone stability and ash erosion. It also evidences the erosive effect of syn-eruptive rain on fine-grained tephra, especially when deposited on a slope. Finally, it reveals the complex magmatic processes that may occur in the shallow plumbing system of monogenetic andesitic volcanoes, which could be particularly important in inland areas of continental arcs.


2021 ◽  
pp. jgs2020-204
Author(s):  
Christopher Svoboda ◽  
Tyrone O. Rooney ◽  
Guillaume Girard ◽  
Chad Deering

Studies synthesizing field work, numerical simulations, petrology, geochemistry, and geophysical observations indicate that the compositional diversity of arc lavas results from evolution of mantle-derived magmas by mixing, assimilation, and fractional crystallization. This evolution occurs within complexes called transcrustal magmatic systems. The mafic lower parts of such zones, called hot zones, are difficult to probe. However, a satellite vent near the stratovolcano Ruapehu in the southern Taupo Volcanic Zone (New Zealand) comprises materials that may originate from a hot zone. Magnesian andesites (Mg#64-69) from the Ohakune scoria cone contain primitive olivine (Fo85-91), high Mg# clinopyroxene (Mg#81-88), and orthopyroxene (Mg#76-83), but lack plagioclase. Disequilibrium of Ohakune crystals and groundmass suggests that the crystal cargo of Ohakune andesites was scavenged from deeper and more primitive levels of the magmatic system. Mineral constraints on temperature and pressure indicate that the hot zone initially formed at mid- to lower-crustal pressures (3.5-7.0±2.8 kbar). We interpret the mafic mineralogy and presence of disequilibrium features as evidence that these andesites and their crystal cargo are products of a hot zone in the middle to lower crust. Products of the hot zone may appear before products of the systems that form the bases of mature stratovolcanoes such as Ruapehu.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5494984


Author(s):  
B Oliva-Urcia ◽  
J López-Martínez ◽  
A Maestro ◽  
A Gil ◽  
T Schmid ◽  
...  

Summary Studying the magnetic fabric in volcanic edifices, particularly lava flows from recent eruptions, allows us to understand the orientation distribution of the minerals related to the flow direction and properly characterize older and/or eroded flows. In this work, the magnetic fabric from recent (Quaternary) lava flows (slightly inclined in seven sites and plateau lavas in two sites), pyroclastic deposits (two sites from a scoria cone) and volcanic cones, domes and plugs (three sites) from Penguin and Bridgeman islands, located in the Bransfield back-arc basin, are presented. The volcanism in the two islands is related to rifting occurring due to the opening of the Bransfield Strait, between the South Shetlands archipelago and the Antarctic Peninsula. The direction of flow of magmatic material is unknown. Rock magnetic analyses, low temperature measurements and electron microscope observations (back-scattered electron imaging and Energy Dispersive X-ray analyses) reveal a Ti-poor magnetite (and maghemite) as the main carrier of the magnetic fabric. Hematite may be present in some samples. Samples from the center of the lavas reveal a magnetic lineation either parallel or imbricated with respect to the flow plane, whereas in the plateau lavas the magnetic lineation is contained within the subhorizontal plane except in vesicle-rich samples, where imbrication occurs. The magnetic lineation indicates a varied flow direction in Bridgeman Island with respect to the spreading Bransfield Basin axis. The flow direction in the plateau lavas on Penguin Island is deduced from the imbrication of the magnetic fabric in the more vesicular parts, suggesting a SE-NW flow. The volcanic domes are also imbricated with respect to an upward flow, and the bombs show scattered distribution.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Andrey A. Zolotarev ◽  
Vasiliy O. Yapaskurt ◽  
Sergey V. Krivovichev ◽  
...  

A new mineral, dioskouriite, CaCu4Cl6(OH)4∙4H2O, represented by two polytypes, monoclinic (2M) and orthorhombic (2O), which occur together, was found in moderately hot zones of two active fumaroles, Glavnaya Tenoritovaya and Arsenatnaya, at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. Dioskouriite seems to be a product of the interactions involving high-temperature sublimate minerals, fumarolic gas and atmospheric water vapor at temperatures not higher than 150 °C. It is associated with avdoninite, belloite, chlorothionite, eriochalcite, sylvite, halite, carnallite, mitscherlichite, chrysothallite, sanguite, romanorlovite, feodosiyite, mellizinkalite, flinteite, kainite, gypsum, sellaite and earlier hematite, tenorite and chalcocyanite in Glavnaya Tenoritovaya and with avdoninite and earlier hematite, tenorite, fluorophlogopite, diopside, clinoenstatite, sanidine, halite, aphthitalite-group sulfates, anhydrite, pseudobrookite, powellite and baryte in Arsenatnaya. Dioskouriite forms tabular, lamellar or flattened prismatic, typically sword-like crystals up to 0.01 mm × 0.04 mm × 0.1 mm combined in groups or crusts up to 1 × 2 mm2 in area. The mineral is transparent, bright green with vitreous luster. It is brittle; cleavage is distinct. The Mohs hardness is ca. 3. Dmeas is 2.75(1) and Dcalc is 2.765 for dioskouriite-2O and 2.820 g cm−3 for dioskouriite-2M. Dioskouriite-2O is optically biaxial (+), α = 1.695(4), β = 1.715(8), γ = 1.750(6) and 2Vmeas. = 70(10)°. The Raman spectrum is reported. The chemical composition (wt%, electron microprobe data, H2O calculated by total difference; dioskouriite-2O/dioskouriite-2M) is: K2O 0.03/0.21; MgO 0.08/0.47; CaO 8.99/8.60; CuO 49.24/49.06; Cl 32.53/32.66; H2O(calc.) 16.48/16.38; -O=Cl −7.35/−7.38; total 100/100. The empirical formulae based on 14 O + Cl apfu are: dioskouriite-2O: Ca1.04(Cu4.02Mg0.01)Σ4.03[Cl5.96(OH)3.90O0.14]Σ10∙4H2O; dioskouriite-2M: (Ca1.00K0.03)Σ4.03(Cu4.01Mg0.08)Σ4.09[Cl5.99(OH)3.83O0.18]Σ10∙4H2O. Dioskouriite-2M has the space group P21/c, a = 7.2792(8), b = 10.3000(7), c = 20.758(2) Å, β = 100.238(11)°, V = 1531.6(2) Å3 and Z = 4; dioskouriite-2O: P212121, a = 7.3193(7), b = 10.3710(10), c = 20.560(3) Å, V = 1560.6(3) Å3 and Z = 4. The crystal structure (solved from single-crystal XRD data, R = 0.104 and 0.081 for dioskouriite-2M and -2O, respectively) is unique. The structures of both polytypes are based upon identical BAB layers parallel to (001) and composed from Cu2+-centered polyhedra. The core of each layer is formed by a sheet A of edge-sharing mixed-ligand octahedra centered by Cu(1), Cu(2), Cu(3), Cu(5) and Cu(6) atoms, whereas distorted Cu(4)(OH)2Cl3 tetragonal pyramids are attached to the A sheet on both sides, along with the Ca(OH)2(H2O)4Cl2 eight-cornered polyhedra, which provide the linkage of the two adjacent layers via long Ca−Cl bonds. The Cu(4) and Ca polyhedra form the B sheet. The difference between the 2M and 2O polytypes arises as a result of different stacking of layers along the c axis. The cation array of the layer corresponds to the capped kagomé lattice that is also observed in several other natural Cu hydroxychlorides: atacamite, clinoatacamite, bobkingite and avdoninite. The mineral is named after Dioskouri, the famous inseparable twin brothers of ancient Greek mythology, Castor and Polydeuces, the same in face but different in exercises and achievements; the name is given in allusion to the existence of two polytypes that are indistinguishable in appearance but different in symmetry, unit cell configuration and XRD pattern.


2021 ◽  
pp. 1-9
Author(s):  
Igor V. Pekov ◽  
Natalia N. Koshlyakova ◽  
Atali A. Agakhanov ◽  
Natalia V. Zubkova ◽  
Dmitry I. Belakovskiy ◽  
...  

Abstract The new alluaudite-group mineral calciojohillerite is one of the major arsenates in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. In middle zones of the fumarole, calciojohillerite is associated with hematite, tenorite, johillerite, nickenichite, bradaczekite, badalovite, tilasite, lammerite, ericlaxmanite, aphthitalite-group sulfates, langbeinite, calciolangbeinite, anhydrite, sanidine, fluorophlogopite, fluoborite, cassiterite, pseudobrookite, rutile, sylvite and halite. In deep zones it occurs in association with anhydrite, diopside, hematite, svabite, berzeliite, schäferite, forsterite, magnesioferrite, ludwigite, rhabdoborite-group fluoroborates, powellite, baryte, fluorapatite, udinaite, arsenudinaite and paraberzeliite. Calciojohillerite forms prismatic crystals up to 1 cm long, their aggregates and crystal crusts up to 0.5 m2. It is transparent, colourless, pale green, pale yellow, light blue, pale lilac or pink, with vitreous lustre. The mineral is brittle, with imperfect cleavage. The Mohs hardness is 3½. Dcalc is 3.915 g cm–3. Calciojohillerite is optically biaxial (–), α = 1.719(3), β = γ = 1.732(3); 2Vmeas. = 15(10)°. Chemical composition (wt.%, electron-microprobe; holotype) is: Na2O 7.32, K2O 0.10, CaO 6.82, MgO 20.31, MnO 0.68, CuO 0.27, ZnO 0.02, Al2O3 0.56, Fe2O3 3.53, TiO2 0.01, SiO2 0.03, P2O5 1.25, V2O5 0.10, As2O5 58.77, SO3 0.13, total 99.90. The empirical formula based on 12 O atoms is (Na1.30K0.01Ca0.67Mg2.78Mn0.05Cu0.02Al0.06Fe3+0.24)Σ5.13(As2.83P0.10S0.01V0.01)Σ2.95O12. Calciojohillerite is monoclinic, C2/c, a = 11.8405(3), b = 12.7836(2), c = 6.69165(16) Å, β = 112.425(3)°, V = 936.29(4) Å3 and Z = 4. The crystal structure was solved from single-crystal X-ray diffraction data, R1 = 0.0227. Calciojohillerite is isostructural with other alluaudite-group minerals. Its simplified crystal chemical formula is A (1)Ca A (1)′□ A (2)□ A (2)′Na M (1)Mg M (2)Mg2(AsO4)3 (□ = vacancy). The idealised formula is NaCaMg3(AsO4)3, or, according to the nomenclature of alluaudite-group arsenates, NaCaMgMg2(AsO4)3. Calciojohillerite is named as an analogue of johillerite NaCu2+MgMg2(AsO4)3 with species-defining Ca instead of Cu in the ideal formula.


Sign in / Sign up

Export Citation Format

Share Document