Reconstruction of the geology and structure of Lake Rotomahana and its hydrothermal systems from high-resolution multibeam mapping and seismic surveys: Effects of the 1886 Tarawera Rift eruption

2016 ◽  
Vol 314 ◽  
pp. 57-83 ◽  
Author(s):  
C.E.J. de Ronde ◽  
S.L. Walker ◽  
C. LeBlanc ◽  
B.W. Davy ◽  
D.J. Fornari ◽  
...  
2020 ◽  
Author(s):  
Malin Waage ◽  
Stefan Bünz ◽  
Kate Waghorn ◽  
Sunny Singhorha ◽  
Pavel Serov

<p>The transition from gas hydrate to gas-bearing sediments at the base of the hydrate stability zone (BHSZ) is commonly identified on seismic data as a bottom-simulating reflection (BSR). At this boundary, phase transitions driven by thermal effects, pressure alternations, and gas and water flux exist. Sedimentation, erosion, subsidence, uplift, variations in bottom water temperature or heat flow cause changes in marine gas hydrate stability leading to expansion or reduction of gas hydrate accumulations and associated free gas accumulations. Pressure build-up in gas accumulations trapped beneath the hydrate layer may eventually lead to fracturing of hydrate-bearing sediments that enables advection of fluids into the hydrate layer and potentially seabed seepage. Depletion of gas along zones of weakness creates hydraulic gradients in the free gas zone where gas is forced to migrate along the lower hydrate boundary towards these weakness zones. However, due to lack of “real time” data, the magnitude and timescales of processes at the gas hydrate – gas contact zone remains largely unknown. Here we show results of high resolution 4D seismic surveys at a prominent Arctic gas hydrate accumulation – Vestnesa ridge - capturing dynamics of the gas hydrate and free gas accumulations over 5 years. The 4D time-lapse seismic method has the potential to identify and monitor fluid movement in the subsurface over certain time intervals. Although conventional 4D seismic has a long history of application to monitor fluid changes in petroleum reservoirs, high-resolution seismic data (20-300 Hz) as a tool for 4D fluid monitoring of natural geological processes has been recently identified.<br><br>Our 4D data set consists of four high-resolution P-Cable 3D seismic surveys acquired between 2012 and 2017 in the eastern segment of Vestnesa Ridge. Vestnesa Ridge has an active fluid and gas hydrate system in a contourite drift setting near the Knipovich Ridge offshore W-Svalbard. Large gas flares, ~800 m tall rise from seafloor pockmarks (~700 m diameter) at the ridge axis. Beneath the pockmarks, gas chimneys pierce the hydrate stability zone, and a strong, widespread BSR occurs at depth of 160-180 m bsf. 4D seismic datasets reveal changes in subsurface fluid distribution near the BHSZ on Vestnesa Ridge. In particular, the amplitude along the BSR reflection appears to change across surveys. Disappearance of bright reflections suggest that gas-rich fluids have escaped the free gas zone and possibly migrated into the hydrate stability zone and contributed to a gas hydrate accumulation, or alternatively, migrated laterally along the BSR. Appearance of bright reflection might also indicate lateral migration, ongoing microbial or thermogenic gas supply or be related to other phase transitions. We document that faults, chimneys and lithology constrain these anomalies imposing yet another control on vertical and lateral gas migration and accumulation. These time-lapse differences suggest that (1) we can resolve fluid changes on a year-year timescale in this natural seepage system using high-resolution P-Cable data and (2) that fluids accumulate at, migrate to and migrate from the BHSZ over the same time scale.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 467
Author(s):  
Daniele Sampietro ◽  
Martina Capponi

The exploitation of gravity fields in order to retrieve information about subsurface geological structures is sometimes considered a second rank method, in favour of other geophysical methods, such as seismic, able to provide a high resolution detailed picture of the main geological horizons. Within the current work we prove, through a realistic synthetic case study, that the gravity field, thanks to the availability of freely of charge high resolution global models and to the improvements in the gravity inversion methods, can represent a valid and cheap tool to complete and enhance geophysical modelling of the Earth’s crust. Three tests were carried out: In the first one a simple two-layer problem was considered, while in tests two and three we considered two more realistic scenarios in which the availability on the study area of constraints derived from 3D or 2D seismic surveys were simulated. In all the considered test cases, in which we try to simulate real-life scenarios, the gravity field, inverted by means of an advanced Bayesian technique, was able to obtain a final solution closer to the (simulated) real model than the assumed a priori information, typically halving the uncertainties in the geometries of the main geological horizons with respect to the initial model.


2020 ◽  
Vol 8 (4) ◽  
pp. SU1-SU10
Author(s):  
Xiaoqiong Lei ◽  
Jun Zhang ◽  
Wenyuan Jin ◽  
Chen Han ◽  
Xiwei Xu

As the detection of urban active faults becomes increasingly important, high-resolution detection of urban blind active faults is very important for urban planning, land use, and disaster risk reduction. However, it is difficult to determine the corresponding surface positions in the city environment for noise and building restrictions. The active source reflection seismic technique is considered the best technique to image faults with a high resolution and deep penetration. However, urban geophysical exploration must often consider the complex urban environment, which includes moving vehicles, dense power grids, and irregular buildings. These features make active source reflection seismic exploration difficult for wide application due to its drawbacks of high cost and the necessary use of explosives. In contrast, ambient noise seismic surveys have the advantages of continuous ambient noise sources, low cost, and fast deployment. These advantages are good for urban exploration. Although ambient noise seismic surveys have a lower resolution than active seismic surveys, their ultrahigh-density layout can improve the resolution. We have conducted two active source seismic lines and two ambient noise seismic lines near the Huangzhuang-Gaoliying fault (HGF) in a northern suburb of Beijing. The autocorrelation and crosscorrelation results are consistent with the active source reflection seismic results. They revealed the location of the HGF, which is composed of a set of steep dip faults. The study of the combination of the two techniques demonstrates that ambient noise seismic surveys are effective for urban active fault detection, especially for larger scale area surveys, and active source reflection seismic surveys can be used for detailed surveys. The combination of the two techniques has a higher efficiency and lower costs and can be widely used in blind urban active fault surveys.


Author(s):  
Michael Shoemaker ◽  
Neil Anderson ◽  
Jesse Baker ◽  
Allen Hatheway ◽  
Michael Roark ◽  
...  

Author(s):  
P. Hatchell ◽  
S. Bakku ◽  
Z. Yang ◽  
J. Lopez ◽  
B. Nolan ◽  
...  

2021 ◽  
Author(s):  
Daniel Müller ◽  
Stefan Bredemeyer ◽  
Edgar Zorn ◽  
Erica De Paolo ◽  
Thomas Walter

<p>Modern UAS (unmanned aircraft system), light weight sensor systems and new processing routines allow us to gather optical data of volcanoes at a high resolution. However, due to the typically poor colorization, our ability to investigate and interpret such data is limited. Further, the information stored in the red, green and blue channel (RGB) is correlated. This makes any analysis a 3 dimensional task. Principal Component Analysis (PCA) helps us to overcome these problems by decorrelating the original band information and generating a variance representation of the original data. Therefore PCA is a suitable tool to detect optical anomalies, as might be caused by volcanic degassing and associated processes.</p><p>Applied in a case study at La Fossa Cone (Vulcano Island - Italy), the PCA showed a high efficiency for the detection and pixel based extraction of areas subject to hydrothermal alteration and sulfur deposition. We observed a broad alteration zone surrounding the active fumarole field, but also heterogeneities within, indicating a segmentation. Systematic variations in color and density distribution of sulfur deposits have implications for structural controls on the degassing system.</p><p>Combining the efficiency of PCA with the high resolution of UAS derived data, this methodology has a high potential to be employed in the spatio-temporal monitoring of volcanic hydrothermal systems and processes at surface.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document