scholarly journals FT24. Ultrasound-Tagged Light Near-Infrared Technology for Cerebral Blood Flow Monitoring During Carotid Endarterectomy

2015 ◽  
Vol 61 (6) ◽  
pp. 23S
Author(s):  
Avner B. Bar Dayan ◽  
Yefim Rabinovich ◽  
Alexander Chaikov ◽  
Otto William Brown ◽  
Yehuda G.G. Wolf
2022 ◽  
Vol 9 ◽  
Author(s):  
Rachel L. Leon ◽  
Eric B. Ortigoza ◽  
Noorjahan Ali ◽  
Dimitrios Angelis ◽  
Joshua S. Wolovits ◽  
...  

Cerebrovascular pressure autoregulation promotes stable cerebral blood flow (CBF) across a range of arterial blood pressures. Cerebral autoregulation (CA) is a developmental process that reaches maturity around term gestation and can be monitored prenatally with both Doppler ultrasound and magnetic resonance imaging (MRI) techniques. Postnatally, there are key advantages and limitations to assessing CA with Doppler ultrasound, MRI, and near-infrared spectroscopy. Here we review these CBF monitoring techniques as well as their application to both fetal and neonatal populations at risk of perturbations in CBF. Specifically, we discuss CBF monitoring in fetuses with intrauterine growth restriction, anemia, congenital heart disease, neonates born preterm and those with hypoxic-ischemic encephalopathy. We conclude the review with insights into the future directions in this field with an emphasis on collaborative science and precision medicine approaches.


1972 ◽  
Vol 6 (1) ◽  
pp. 14-19 ◽  
Author(s):  
H.C. Engell ◽  
Gudrun Boysen ◽  
H.J. Ladegaard-Pedersen ◽  
H. Henriksen

2006 ◽  
Vol 100 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Kenneth M. Tichauer ◽  
Derek W. Brown ◽  
Jennifer Hadway ◽  
Ting-Yim Lee ◽  
Keith St. Lawrence

Impaired oxidative metabolism following hypoxia-ischemia (HI) is believed to be an early indicator of delayed brain injury. The cerebral metabolic rate of oxygen (CMRO2) can be measured by combining near-infrared spectroscopy (NIRS) measurements of cerebral blood flow (CBF) and cerebral deoxy-hemoglobin concentration. The ability of NIRS to measure changes in CMRO2 following HI was investigated in newborn piglets. Nine piglets were subjected to 30 min of HI by occluding both carotid arteries and reducing the fraction of inspired oxygen to 8%. An additional nine piglets served as sham-operated controls. Measurements of CBF, oxygen extraction fraction (OEF), and CMRO2 were obtained at baseline and at 6 h after the HI insult. Of the three parameters, only CMRO2 showed a persistent and significant change after HI. Five minutes after reoxygenation, there was a 28 ± 12% (mean ± SE) decrease in CMRO2, a 72 ± 50% increase in CBF, and a 56 ± 19% decrease in OEF compared with baseline ( P < 0.05). By 30 min postinsult and for the remainder of the study, there were no significant differences in CBF and OEF between control and insult groups, whereas CMRO2 remained depressed throughout the 6-h postinsult period. This study demonstrates that NIRS can measure decreases in CMRO2 caused by HI. The results highlight the potential for NIRS to be used in the neonatal intensive care unit to detect delayed brain damage.


Sign in / Sign up

Export Citation Format

Share Document