bolus tracking
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 18)

H-INDEX

36
(FIVE YEARS 1)

2021 ◽  
pp. 110139
Author(s):  
Juan Yu ◽  
Shushen Lin ◽  
Hao Lu ◽  
Rui Wang ◽  
Jie Liu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Steven Raeymaeckers ◽  
Maurizio Tosi ◽  
Johan De Mey

Objective. 4DCT for the detection of (an) enlarged parathyroid(s) is a commonly performed examination in the management of primary hyperparathyroidism. Protocols are often institution-specific; this review aims to summarize the different protocols and explore the reported sensitivity and specificity of different 4DCT protocols as well as the associated dose. Materials and Methods. A literature study was independently conducted by two radiologists from April 2020 until May 2020 using the Medical Literature Analysis and Retrieval System Online (MEDLINE) database. Articles were screened and assessed for eligibility. From eligible studies, data were extracted to summarize different parameters of the scanning protocol and observed diagnostic attributes. Results. A total of 51 articles were included and 56 scanning protocols were identified. Most protocols use three (n = 25) or four different phases (n = 23). Almost all authors include noncontrast enhanced imaging and an arterial phase. Arterial images are usually obtained 25–30 s after administration of contrast, and less agreement exists concerning the timing of the venous phase(s). A mean contrast bolus of 100 mL is administered at 3-4 mL/s. Bolus tracking is not often used (n = 3). A wide range of effective doses are reported, up to 28 mSv. A mean sensitivity of 81.5% and a mean specificity of 86% are reported. Conclusion. Many different 4DCT scanning protocols for the detection of parathyroid adenomas exist in the literature. The number of phases does not appear to affect sensitivity or specificity. A triphasic approach, however, seems preferable, as three patterns of enhancement of parathyroid adenomas are described. Bolus tracking could help to reduce the variability of enhancement. Sensitivity and specificity also do not appear to be affected by other scan parameters like tube voltage or tube current. To keep the effective dose within limits, scanning at a lower fixed tube current seems preferable. Lowering tube voltage from 120 kV to 100 kV may yield similar image contrast but would also help lower the dose.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aydin Demircioğlu ◽  
Magdalena Charis Stein ◽  
Moon-Sung Kim ◽  
Henrike Geske ◽  
Anton S. Quinsten ◽  
...  

AbstractFor CT pulmonary angiograms, a scout view obtained in anterior–posterior projection is usually used for planning. For bolus tracking the radiographer manually locates a position in the CT scout view where the pulmonary trunk will be visible in an axial CT pre-scan. We automate the task of localizing the pulmonary trunk in CT scout views by deep learning methods. In 620 eligible CT scout views of 563 patients between March 2003 and February 2020 the region of the pulmonary trunk as well as an optimal slice (“reference standard”) for bolus tracking, in which the pulmonary trunk was clearly visible, was annotated and used to train a U-Net predicting the region of the pulmonary trunk in the CT scout view. The networks’ performance was subsequently evaluated on 239 CT scout views from 213 patients and was compared with the annotations of three radiographers. The network was able to localize the region of the pulmonary trunk with high accuracy, yielding an accuracy of 97.5% of localizing a slice in the region of the pulmonary trunk on the validation cohort. On average, the selected position had a distance of 5.3 mm from the reference standard. Compared to radiographers, using a non-inferiority test (one-sided, paired Wilcoxon rank-sum test) the network performed as well as each radiographer (P < 0.001 in all cases). Automated localization of the region of the pulmonary trunk in CT scout views is possible with high accuracy and is non-inferior to three radiographers.


Author(s):  
Corey T. Jensen ◽  
Rahul Khetan ◽  
Jake Adkins ◽  
Sanaz Javadi ◽  
Xinming Liu ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 92-97
Author(s):  
Ayaka Chiba ◽  
Kohei Harada ◽  
Yoshiya Ohashi ◽  
Kanako Numasawa ◽  
Tatsuya Imai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document