Wind tunnel experiment for predicting a visible plume region from a wet cooling tower

2007 ◽  
Vol 95 (8) ◽  
pp. 741-754 ◽  
Author(s):  
Takenobu Michioka ◽  
Ayumu Sato ◽  
Takao Kanzaki ◽  
Kouichi Sada
2014 ◽  
Vol 53 (2) ◽  
pp. 234-241 ◽  
Author(s):  
Dong-Peng Guo ◽  
Ren-Tai Yao ◽  
Dan Fan

AbstractThis paper introduces a wind tunnel experiment to study the effect of the cooling tower of a nuclear power plant on the flow and the characteristics of visible plume regions. The relevant characteristics of the flow field near the cooling tower, such as the plume rise and the visible plume region, are compared with the results of previous experimental data from Électricité de France (EDF) and the Briggs formulas. The results show that the wind tunnel experiment can simulate the top backflow of the cooling tower and the rear cavity regions among others. In the near-wake region, including the recirculation cavity, mean velocity decreases and turbulence intensity increases significantly. The maximum turbulence intensity observed is 0.5. In addition, the disturbed flow extent of the cooling tower top reaches 1.5 times the cooling tower height. Analysis of the visible plume region shows that the wind tunnel experiment can simulate the variation of a visible plume region. The results are consistent with the wind tunnel experiment of EDF. Moreover, the plume rise analysis shows that the wind tunnel experiment data are in agreement with the Briggs formulas for 50–200 m. As a whole, the proposed wind tunnel experiment can simulate the flow field variation of the visible plume region and the plume rise around the buildings with reasonable accuracy.


2022 ◽  
Author(s):  
Case P. Van Dam ◽  
Sai B. Mothukuri ◽  
Seyedeh Sheida Hosseini ◽  
Edward White ◽  
Lisa Brown ◽  
...  

2018 ◽  
Vol 65 (8) ◽  
pp. 1049-1062 ◽  
Author(s):  
Zanyar Feizi ◽  
Shamsollah Ayoubi ◽  
Mohammad Reza Mosaddeghi ◽  
Ali Asghar Besalatpour ◽  
Mojtaba Zeraatpisheh ◽  
...  

2014 ◽  
Vol 716-717 ◽  
pp. 764-766
Author(s):  
Min Jiang ◽  
Ji He Zhou

On the basis of javelin wind tunnel experiment, we established mathematical model of javelin flight to conduct a computer optimization and got the conclusions. When the initial velocity is in the range of 25m/s-30m/s, the best throwing condition is: the throwing angle is 40°, the angle of attack is 11°. The javelin throwing condition is not zero angle of attack was necessary and sufficient for obtained aerodynamic efficiency.


2010 ◽  
Vol 2 (2) ◽  
Author(s):  
Agus Aribowo

This paper presents the results of investigation the separation buble which growing and burst on aerofoil NACA 0017 with effect mechanism of stall in the subsonic wind tunnel. Experiment have done on wind speed 20 m per s and 30 m per s. The data pecked from the orifice of pressure with interval 2 degree until stall position. The result was separation buble which growing on the airfoil, going to ahead of airfoil together with increasing the Reynolds number. After touching, the flow appeared to separate from the upper airfoil without reattachment.


Sign in / Sign up

Export Citation Format

Share Document