Electrochemical oxidation technology: A review of its application in high-efficiency treatment of wastewater containing persistent organic pollutants

Author(s):  
Jing Qiao ◽  
Yuzhu Xiong
2007 ◽  
Vol 55 (1-2) ◽  
pp. 261-266 ◽  
Author(s):  
S.J. Chung ◽  
S. Balaji ◽  
M. Matheswaran ◽  
T. Ramesh ◽  
I.S. Moon

This study investigates the hybrid mediated electrochemical oxidation (HMEO) technology, which is a newly developed non thermal electrochemical oxidation process for organic destruction. A combination of ozone and ultrasonication processes to the mediated electrochemical oxidation (MEO) process is termed as hybrid mediated electrochemical oxidation. The electrochemical cell was developed in this laboratory. In the present study, several organic compounds, such as phenol, benzoquinone and ethylenediaminetetraacetic acid (EDTA), were chosen as the model organic pollutants to be destructed by the hybrid process. The organic destruction was monitored based on the CO2 generation and total organic carbon (TOC) reduction. The HMEO process was found to be extremely effective in the destruction of all the target organics chosen in this study. The information obtained from this study will provide an insight in adopting this technique for dealing with more recalcitrant organics (POPs).


2019 ◽  
Vol 299 ◽  
pp. 01002
Author(s):  
Alexandra Banu ◽  
Madalina Mocirla ◽  
GizemNur Soylu

Methyl orange (MO) is an environmental concern because their degradation products are highly toxic to aquatic microorganisms and carcinogenic, also their degradation products are mutagenic to humans. Electrochemical oxidation is one of the promising technologies for the dye wastewater de-pollution, which are obtained extensively attentions because it holds the advantages of total oxidization of dyes to CO2 and H2O. Titanium dioxide has emerged as the leading candidate to provide complete destruction of organic pollutants via heterogeneous photocatalysis that result in total mineralization of many organic pollutants. Though this process offers actual annihilation of the dye moleculesatavery high efficiency, thepost-treatmentrecoveryof TiO2 canbecostly. The titanium nanotubes are typically produced by anodic oxidation of the titanium foil in various electrolytes.Degradation of methyl orange (MO) was conducted by electrochemical oxidation method with Ti/TiO 2 nanotubes anodes. Were prepared samples of TiO2 nanotubes by anodizing titanium in an electrochemical bath consisting of 1:1 waterglycerol with 0.4% of HF using different conditions: 25V for 8 hours, 30V for 3 hours in the stationary state, 30V 3 hours under ultrasound stirring. The oxidation efficiency was determined by UV-VIS analysis of the electrolyte.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Tee L. Guidotti

On 16 October 1996, a malfunction at the Swan Hills Special Waste Treatment Center (SHSWTC) in Alberta, Canada, released an undetermined quantity of persistent organic pollutants (POPs) into the atmosphere, including polychlorinated biphenyls, dioxins, and furans. The circumstances of exposure are detailed in Part 1, Background and Policy Issues. An ecologically based, staged health risk assessment was conducted in two parts with two levels of government as sponsors. The first, called the Swan Hills Study, is described in Part 2. A subsequent evaluation, described here in Part 3, was undertaken by Health Canada and focused exclusively on Aboriginal residents in three communities living near the lake, downwind, and downstream of the SHSWTC of the area. It was designed to isolate effects on members living a more traditional Aboriginal lifestyle. Aboriginal communities place great cultural emphasis on access to traditional lands and derive both cultural and health benefits from “country foods” such as venison (deer meat) and local fish. The suspicion of contamination of traditional lands and the food supply made risk management exceptionally difficult in this situation. The conclusion of both the Swan Hills and Lesser Slave Lake studies was that although POPs had entered the ecosystem, no effect could be demonstrated on human exposure or health outcome attributable to the incident. However, the value of this case study is in the detail of the process, not the ultimate dimensions of risk. The findings of the Lesser Slave Lake Study have not been published previously and are incomplete.


Sign in / Sign up

Export Citation Format

Share Document