Treatment of hydrothermal liquefaction wastewater with ultrafiltration and air stripping for oil and particle removal and ammonia recovery

2021 ◽  
Vol 44 ◽  
pp. 102427
Author(s):  
Ali Sayegh ◽  
Nikhil Shylaja Prakash ◽  
Thomas Helmer Pedersen ◽  
Harald Horn ◽  
Florencia Saravia
2017 ◽  
Vol 20 (7) ◽  
pp. 1479-1489 ◽  
Author(s):  
Massimiliano Errico ◽  
Lene Fjerbaek Sotoft ◽  
Anne Kjærhuus Nielsen ◽  
Birgir Norddahl

2020 ◽  
Vol 27 (36) ◽  
pp. 45108-45120
Author(s):  
Heloísa Alves Pereira dos Santos ◽  
Armando Borges de Castilhos Júnior ◽  
Willian Cézar Nadaleti ◽  
Vitor Alves Lourenço

2014 ◽  
Vol 90 (12) ◽  
pp. 2208-2217 ◽  
Author(s):  
Bianxia Liu ◽  
Apostolos Giannis ◽  
Jiefeng Zhang ◽  
Victor W.-C. Chang ◽  
Jing-Yuan Wang

2016 ◽  
Vol 51 (4) ◽  
pp. 321-330 ◽  
Author(s):  
Qiaosi Deng ◽  
Elsayed Elbeshbishy ◽  
Hyung-Sool Lee

Ammonium nitrogen recovery using natural zeolite from the permeates of anaerobic membrane bioreactors was investigated with batch and continuous experiments. Regeneration of exhausted zeolite was compared between mechanical shaking and air stripping, and experimental results showed the superiority of air stripping over the shaking. Liquid circulation and air flow rates were optimized in a continuous zeolite-packed column with a separate recovery system consisting of a regeneration chamber and a stripping column. The liquid circulation rate had significant effect neither on the regeneration efficiency (RE) nor the ammonia transfer efficiency (ATE), while the ATE significantly increased with increasing air flow rate. The effect of pH on ammonia recovery was also tested and the results showed that both RE and ATE significantly improved at alkaline pH. When pH increased from 9.5 to 12, the RE increased from 9.2% to 84% and the ATE increased from 54% to 92%. The results emphasized that the pH should be higher than 11 for efficient regeneration and recovery of ammonia. The preliminary economic analysis showed the superiority of the alkaline regeneration–air stripping process over the high pH regeneration and the conventional regeneration.


2020 ◽  
Vol 702 ◽  
pp. 134971 ◽  
Author(s):  
Weiwei Li ◽  
Xiaolan Shi ◽  
Sunjia Zhang ◽  
Guisheng Qi

1984 ◽  
Vol 75 ◽  
pp. 599-602
Author(s):  
T.V. Johnson ◽  
G.E. Morfill ◽  
E. Grun

A number of lines of evidence suggest that the particles making up the E-ring are small, on the order of a few microns or less in size (Terrile and Tokunaga, 1980, BAAS; Pang et al., 1982 Saturn meeting; Tucson, AZ). This suggests that a variety of electromagnetic and plasma affects may be important in considering the history of such particles. We have shown (Morfill et al., 1982, J. Geophys. Res., in press) that plasma drags forces from the corotating plasma will rapidly evolve E-ring particle orbits to increasing distance from Saturn until a point is reached where radiation drag forces acting to decrease orbital radius balance this outward acceleration. This occurs at approximately Rhea's orbit, although the exact value is subject to many uncertainties. The time scale for plasma drag to move particles from Enceladus' orbit to the outer E-ring is ~104yr. A variety of effects also act to remove particles, primarily sputtering by both high energy charged particles (Cheng et al., 1982, J. Geophys. Res., in press) and corotating plasma (Morfill et al., 1982). The time scale for sputtering away one micron particles is also short, 102 - 10 yrs. Thus the detailed particle density profile in the E-ring is set by a competition between orbit evolution and particle removal. The high density region near Enceladus' orbit may result from the sputtering yeild of corotating ions being less than unity at this radius (e.g. Eviatar et al., 1982, Saturn meeting). In any case, an active source of E-ring material is required if the feature is not very ephemeral - Enceladus itself, with its geologically recent surface, appears still to be the best candidate for the ultimate source of E-ring material.


2019 ◽  
Author(s):  
Wan-Ting (Grace) Chen ◽  
Zhenwei Wu ◽  
Buchun Si ◽  
Yuanhui Zhang

This study aims to produce renewable diesel and biopriviliged chemicals from microalgae that can thrive in wastewater environment. <i>Spirulina</i> (SP) was converted into biocrude oil at 300ºC for a 30-minute reaction time via hydrothermal liquefaction (HTL). Next, fractional distillation was used to separate SP-derived biocrude oil into different distillates. It was found that 62% of the viscous SP-derived biocrude oil can be separated into liquids at about 270ºC (steam temperature of the distillation). Physicochemical characterizations, including density, viscosity, acidity, elemental compositions, higher heating values and chemical compositions, were carried out with the distillates separated from SP-derived biocrude oil. These analyses showed that 15% distillates could be used as renewable diesel because they have similar heating values (43-46 MJ/kg) and carbon numbers (ranging from C8 to C18) to petroleum diesel. The Van Krevelan diagram of the distillates suggests that deoxygenation was effectively achieved by fractional distillation. In addition, GC-MS analysis indicates that some distillates contain biopriviliged chemicals like aromatics, phenols and fatty nitriles that can be used as commodity chemicals. An algal biorefinery roadmap was proposed based on the analyses of different distillates from the SP-derived biocrude oil. Finally, the fuel specification analysis was conducted with the drop-in renewable diesel, which was prepared with 10 vol.% (HTL10) distillates and 90 vol.% petroleum diesel. According to the fuel specification analysis, HTL10 exhibited a qualified lubricity (<520 µm), acidity (<0.3 mg KOH/g) and oxidation stability (>6 hr), as well as a comparable net heat of combustion (1% lower), ash content (29% lower) and viscosity (17% lower) to those of petroleum diesel. Ultimately, it is expected that this study can provide insights for potential application of algal biocrude oil converted via HTL.


Sign in / Sign up

Export Citation Format

Share Document