particle removal
Recently Published Documents


TOTAL DOCUMENTS

726
(FIVE YEARS 142)

H-INDEX

35
(FIVE YEARS 6)

Author(s):  
Po Jin ◽  
Qi Gao ◽  
Quanzhao Wang ◽  
GuangYan Guo

In this paper, the finite element cutting simulation model with irregular distribution of multiple particles is established, the stress and strain distribution of SiC particles in the process of machining, as well as the material removal mechanism are analyzed. The effects of cutting velocity and feed per tooth on the surface quality of the material are also analyzed. The effect of feed per tooth on subsurface damage is revealed. The results show that in the micro-milling of SiCp/Al2024 composites, the particle removal form is mainly crushing and extraction. The surface defects of the workpiece mainly include pits, scratches, cracks, and extrusion damage. When the cutting velocity increases, the surface defects gradually change to crack, which can improve the surface quality of the workpiece. Increasing the feed per tooth will increase the surface defects of the workpiece and lead to poor surface quality. When the feed per tooth increased from 0.428 µm to 0.714 µm, the subsurface damage thickness increased from 35.2 µm to 47.3 µm.


Author(s):  
E.Y. Chen ◽  
Peter Renner ◽  
K. Lee ◽  
Bing Guo ◽  
Hong Liang

Abstract Solar panel cleaning is important to maintain the efficiency of energy production. In this research, we investigated the effects of relative humidity and condensation on the effectiveness of cleaning. The dust particles are subjected to various forces once they are deposited on the surface of a solar panel. When the dust particles continue to build up, they are also subjected to the adhesion forces from the neighboring dust particles. The adhesion forces from the substrates and the neighboring particles are dependent on the ambient conditions. Fundamentally, the interaction between the adhesion force of particle-particle and particle-substrate under various conditions was discussed in this manuscript.


2021 ◽  
Vol 64 (1) ◽  
pp. 1-17
Author(s):  
Dilip Ashtekar

Abstract Currently, limited guidance is available for the contamination control of visible particles for the manufacture of sterile devices; thus, a comprehensive guidance is warranted. Sterile devices require stringent control of visible particulates to ensure proper functionality, performance assurance of sterility, reliability, patient safety, efficacy, and product quality. This paper outlines practical and science-based strategies to prevent/minimize visible particle contamination from non-process related extrinsic and process related intrinsic sources. Witness plates are proposed as a comprehensive strategy for the real time detection of visible particles, sources of extrinsic and intrinsic visible particles, and methods to identify particle types. Implementing the control measures described herein, which include air ionization units for the control and neutralization of static charges, would maximize device yield and quality, thus reducing rework and leading to increased profitability. Installing validated air ionization systems at appropriate manufacturing and processing locations, storage, product transfer areas, and gown-up rooms can significantly reduce visible particle contamination accumulation, dispersion, and yield losses. Implementing effective material transfer practices can further minimize the risk of introduction of unwanted particles and particle dispersion within classified areas. Also described are additional control measures, such as material systems and supply chain controls, good facility design, gowning practices, manufacturing equipment and tool controls, and manual visual inspections which would further contribute to the overall reduction of particle burden. Crucial elements of an effective particle removal process are the dry and wet cleaning processes and the facility surveillance program. Process-product-particle traceability matrices can serve as effective tools to promptly identify trends and reduce device conformity defects. For this paper, the meaning of the term particle only includes particulates and particulate matter. Microbial contamination control approaches, including facility decontamination, are outside the scope of this paper.


2021 ◽  
Vol 44 ◽  
pp. 102427
Author(s):  
Ali Sayegh ◽  
Nikhil Shylaja Prakash ◽  
Thomas Helmer Pedersen ◽  
Harald Horn ◽  
Florencia Saravia

Georesursy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 58-64
Author(s):  
Anatoly Nikiforov ◽  
Roman Sadovnikov

The paper discusses the influence of wave action on the process of detachment and removal of particles from a porous body by a two-phase filtration flow. When modeling this process, the problem of the influence of the wave field on the force under the action of which the particles are detached from the pore walls is solved. For the first time, a pore-size distribution function is used for its solution. An expression for the critical flow velocity under wave action has been obtained. Critical frequency value of wave action depends on the capillary radius and the smaller the capillary radius is, the higher frequency is needed to enhance the effect of the action. At higher frequency of oscillation the peak of maximum change in the thickness of the sedimentary layer is shifted towards the pores of small radius. To maintain the influence of the wave field on the filtration parameters of the porous medium, the wave action should be carried out at a dynamically changing frequency range to increase the coverage of the effect of as many pores as possible. It is shown that particle removal during wave action increases due to the action of inertial forces, which reduce the influence of forces holding the particles on the pore surface.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8012
Author(s):  
Adam Ruciński ◽  
Andrzej Grzebielec ◽  
Maciej Jaworski ◽  
Rafał Laskowski ◽  
Grzegorz Niewiński ◽  
...  

Air pollution is a significant problem in city centers. According to public health care in Poland, there is a need for local authorities to propose good purification solutions in both outdoor and indoor conditions. The main objective of this study is the development of an appropriate filtration system for public transport, especially for buses and bus stops. Firstly, the authors justify the need for air filtration in the capital of Poland, Warsaw. The average concentration level of PM10 and PM2.5 dust particles in large Polish cities is presented. In addition, it is underlined that PM2.5 dust particles are carriers for coronavirus COVID-19 and easily inhaled by humans. In the next step, the authors introduce an experimental stand used in the examination of different filtration baffles. The filtration efficiency is defined and calculated according to experimental examinations. In these experiments, an antismog cover for air-conditioning split systems, an H13 HEPA filter and a three-stage filtration baffle (active carbon + F5 filter + EPA11 filter) were taken into consideration, and the efficiency of filtration under pressure-drop conditions and the influence of moisture were ascertained. The best filter setup was thereby determined to be the three-stage filtration baffle, being the most efficient in cleaning air on account of having the smallest mass concentration of PM2.5. This indicates that three-stage filtration is the most suitable air-filtration method for public transportation in cities where air pollution is a serious concern.


2021 ◽  
Author(s):  
Michael J. Risbeck ◽  
Martin Z. Bazant ◽  
Zhanhong Jiang ◽  
Young M. Lee ◽  
Kirk H. Drees ◽  
...  

The COVID-19 pandemic has focused renewed attention on the ways in which building HVAC systems may be operated to mitigate the risk of airborne disease transmission. The most common suggestion is to increase outdoor-air ventilation rates so as to dilute the concentrations of infectious aerosol particles indoors. Although this strategy does reduce the likelihood of disease spread, it is often much more costly than other strategies that provide equivalent particle removal or deactivation. To address this tradeoff and arrive at practical recommendations, we explain how different mitigation strategies can be expressed in terms of equivalent outdoor air (EOA) to provide a common basis for energy analysis. We then show the effects of each strategy on EOA delivery and energy cost in simulations of realistic buildings in a variety of climates. Key findings are that in-duct filtration is often the most efficient mitigation strategy, while significant risk reduction generally requires increasing total airflow to the system, either through adjusted HVAC setpoints or standalone disinfection devices.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7476
Author(s):  
Andrzej Sitka ◽  
Wiesław Jodkowski ◽  
Piotr Szulc ◽  
Daniel Smykowski ◽  
Bogusław Szumiło

This paper presents a study on the application of a ceramic filter in the biomass gasification process and its efficiency in particulate matter removal from the process gas and flue gas. A significant advantage of this type of filter is its high efficiency in small particle removal (<1 µm). This feature allows us to reach the much lower emissions that are required by the applicable standards. The study was performed using an original biomass gasification installation, where conifer scobs were used as feedstock. The installation, its operation and measurement methodology are described in the article. The study included the analysis of process gas and particulate matter, as well as particulate matter content before and after the filter was applied. The measurements indicate that the efficiency of particulate matter removal reaches 99.1%. The analysis of particulate matter in the process gas allowed us to determine that its content was 18.26%, and additionally it was indicated that it contained combustible parts, which undergo combustion in the combustion chamber. It was found that the content of particulate matter is reduced 11 times when compared to the process gas before the filter. An accurate estimation of particulate matter content in flue gas has been also shown for the system without the ceramic filter. As a result, the method allowed us to determine the overall efficiency of particulate matter removal using the ceramic filter, which is equal to 99.9% or 2 mg/m3 (N). The performed study shows that pre-combustion particulate matter removal is preferred over post-combustion particulate matter removal from flue gas. The reason is that the stream of process gas is several times smaller than the flue gas stream, thus the required size of the filter is smaller. Furthermore, process gas filtering allows us to keep the heat transfer surfaces clean, which preserves high thermal efficiency and durability of equipment. The presented results of performed tests are the early stage of the development of the technology of process gas refining in the waste gasification process. The final target is to reach standards similar to those in the case of natural gas.


Author(s):  
Marcela C Villagrán Olivares ◽  
Jesica G Benito ◽  
Rodolfo O Uñac ◽  
Ana M Vidales

Abstract The formulation of a Kinetic Monte Carlo simulation to account for the different possible mechanisms present in the problem of resuspension of aerosol particles is addressed as an extension of a former model [1]. The re-entrainment of micrometer particles to airflow when detached from a surface by aerodynamic forces is modeled using the similitude of the problem with the desorption process from heterogeneous surfaces. Depending on the relative role of the intervening forces, three main mechanisms for movement initiation can be present: rolling, sliding and lifting-off. Three different transition probabilities are defined for each mechanism and the corresponding transition rates calculated for the kinetic process to be simulated. The decisive factor for the development of the model is to set an appropriate dynamical hierarchy to simulate correctly the evolution of the transition rates as the airflow velocity increases, reflecting the stochastic nature of the process, not always fully captured by other Monte Carlo approaches. The model is applied to spherical and elongated particles on a flat surface, reproducing qualitatively well the experimental trends found by other authors for the case of particles with different shapes. It is also demonstrated that, for elongated particles, the main mechanism assisting the detachment is not rolling but sliding, underscoring the need for an adequate choice of the particles shape and detachment mechanism when looking for the critical conditions for particle removal from surfaces.


2021 ◽  
Vol 5 (4) ◽  
pp. 46
Author(s):  
Margaritis Kostoglou ◽  
Thodoris D. Karapantsios

The population balance is an indispensable tool for studying colloidal, aerosol, and, in general, particulate systems. The need to incorporate spatial variation (imposed by flow) to it invokes the reduction of its complexity and degrees of freedom. It has been shown in the past that the method of moments and, in particular, the log-normal approximation can serve this purpose for certain phenomena and mechanisms. However, it is not adequate to treat gravitational deposition. In the present work, the ability of the particular method to treat diffusional and convective diffusional depositions relevant to colloid systems is studied in detail.


Sign in / Sign up

Export Citation Format

Share Document