A hybrid evolutionary algorithm based on tissue membrane systems and CMA-ES for solving numerical optimization problems

2016 ◽  
Vol 105 ◽  
pp. 38-47 ◽  
Author(s):  
Chuang Liu ◽  
Linan Fan
2021 ◽  
Vol 6 (4 (114)) ◽  
pp. 6-14
Author(s):  
Maan Afathi

The main purpose of using the hybrid evolutionary algorithm is to reach optimal values and achieve goals that traditional methods cannot reach and because there are different evolutionary computations, each of them has different advantages and capabilities. Therefore, researchers integrate more than one algorithm into a hybrid form to increase the ability of these algorithms to perform evolutionary computation when working alone. In this paper, we propose a new algorithm for hybrid genetic algorithm (GA) and particle swarm optimization (PSO) with fuzzy logic control (FLC) approach for function optimization. Fuzzy logic is applied to switch dynamically between evolutionary algorithms, in an attempt to improve the algorithm performance. The HEF hybrid evolutionary algorithms are compared to GA, PSO, GAPSO, and PSOGA. The comparison uses a variety of measurement functions. In addition to strongly convex functions, these functions can be uniformly distributed or not, and are valuable for evaluating our approach. Iterations of 500, 1000, and 1500 were used for each function. The HEF algorithm’s efficiency was tested on four functions. The new algorithm is often the best solution, HEF accounted for 75 % of all the tests. This method is superior to conventional methods in terms of efficiency


Author(s):  
Peng Wang ◽  
Changsheng Zhang ◽  
Bin Zhang ◽  
Tingting Liu ◽  
Jiaxuan Wu

Multiobjective density driven evolutionary algorithm (MODdEA) has been quite successful in solving multiobjective optimization problems (MOPs). To further improve its performance and address its deficiencies, this paper proposes a hybrid evolutionary algorithm based on dimensional diversity (DD) and firework explosion (FE). DD is defined to reflect the diversity degree of population dimension. Based on DD, a selection scheme is designed to balance diversity and convergence. A hybrid variation based on FE and genetic operator is designed to facilitate diversity of population. The proposed algorithm is tested on 14 tests problems with diverse characteristics and compared with three state-of-the-art designs. Experimental results show that the proposed design is better or at par with the chosen state-of-the-art algorithms for multiobjective optimization.


2016 ◽  
Vol 09 (02) ◽  
pp. 1650017 ◽  
Author(s):  
Chuang Liu ◽  
Linan Fan

In this paper, a new evolutionary algorithm based on a membrane system is proposed to solve the dynamic or uncertain optimization problems. The proposed algorithm employs objects, a dynamical membrane structure and several reaction rules of the membrane systems. The object represents a candidate solution of the optimization problems. The dynamical structure consists of the nested membranes where a skin membrane contains several membranes, which is useful for the proposed algorithm that finds optimal solutions. The reaction rules are designed to locate and track the optimal solutions of the dynamic optimization problems (DOPs), which are inspired by processing the chemical compounds in the region of cellular membranes. Experimental study is conducted based on the moving peaks benchmark to evaluate the performance of the proposed algorithm in comparison with three state-of-the-art dynamic optimization algorithms. The results indicate the proposed algorithm is effective to solve the DOPs.


Sign in / Sign up

Export Citation Format

Share Document