Classifier chains for positive unlabelled multi-label learning

2021 ◽  
Vol 213 ◽  
pp. 106709
Author(s):  
Paweł Teisseyre
Keyword(s):  
2017 ◽  
Vol 126 ◽  
pp. 78-90 ◽  
Author(s):  
Deiner Mena ◽  
José Ramón Quevedo ◽  
Elena Montañés ◽  
Juan José del Coz

2021 ◽  
Vol 30 (1) ◽  
pp. 511-523
Author(s):  
Ephrem Admasu Yekun ◽  
Abrahaley Teklay Haile

Abstract One of the important measures of quality of education is the performance of students in academic settings. Nowadays, abundant data is stored in educational institutions about students which can help to discover insight on how students are learning and to improve their performance ahead of time using data mining techniques. In this paper, we developed a student performance prediction model that predicts the performance of high school students for the next semester for five courses. We modeled our prediction system as a multi-label classification task and used support vector machine (SVM), Random Forest (RF), K-nearest Neighbors (KNN), and Multi-layer perceptron (MLP) as base-classifiers to train our model. We further improved the performance of the prediction model using a state-of-the-art partitioning scheme to divide the label space into smaller spaces and used Label Powerset (LP) transformation method to transform each labelset into a multi-class classification task. The proposed model achieved better performance in terms of different evaluation metrics when compared to other multi-label learning tasks such as binary relevance and classifier chains.


Author(s):  
Victor Freitas Rocha ◽  
Flávio Miguel Varejão ◽  
Marcelo Eduardo Vieira Segatto
Keyword(s):  

Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1143
Author(s):  
Zhenwu Wang ◽  
Tielin Wang ◽  
Benting Wan ◽  
Mengjie Han

Multi-label classification (MLC) is a supervised learning problem where an object is naturally associated with multiple concepts because it can be described from various dimensions. How to exploit the resulting label correlations is the key issue in MLC problems. The classifier chain (CC) is a well-known MLC approach that can learn complex coupling relationships between labels. CC suffers from two obvious drawbacks: (1) label ordering is decided at random although it usually has a strong effect on predictive performance; (2) all the labels are inserted into the chain, although some of them may carry irrelevant information that discriminates against the others. In this work, we propose a partial classifier chain method with feature selection (PCC-FS) that exploits the label correlation between label and feature spaces and thus solves the two previously mentioned problems simultaneously. In the PCC-FS algorithm, feature selection is performed by learning the covariance between feature set and label set, thus eliminating the irrelevant features that can diminish classification performance. Couplings in the label set are extracted, and the coupled labels of each label are inserted simultaneously into the chain structure to execute the training and prediction activities. The experimental results from five metrics demonstrate that, in comparison to eight state-of-the-art MLC algorithms, the proposed method is a significant improvement on existing multi-label classification.


2019 ◽  
Vol 335 ◽  
pp. 185-194 ◽  
Author(s):  
Xie Jun ◽  
Yu Lu ◽  
Zhu Lei ◽  
Duan Guolun

Sign in / Sign up

Export Citation Format

Share Document