Intelligent fault diagnosis under small sample size conditions via Bidirectional InfoMax GAN with unsupervised representation learning

2021 ◽  
pp. 107488
Author(s):  
Shen Liu ◽  
Jinglong Chen ◽  
Shuilong He ◽  
Enyong Xu ◽  
Haixin Lv ◽  
...  
Author(s):  
Dengyu Xiao ◽  
Yixiang Huang ◽  
Chengjin Qin ◽  
Zhiyu Liu ◽  
Yanming Li ◽  
...  

Data-driven machinery fault diagnosis has gained much attention from academic research and industry to guarantee the machinery reliability. Traditional fault diagnosis frameworks are commonly under a default assumption: the training and test samples share the similar distribution. However, it is nearly impossible in real industrial applications, where the operating condition always changes over time and the quantity of the same-distribution samples is often not sufficient to build a qualified diagnostic model. Therefore, transfer learning, which possesses the capacity to leverage the knowledge learnt from the massive source data to establish a diagnosis model for the similar but small target data, has shown potential value in machine fault diagnosis with small sample size. In this paper, we propose a novel fault diagnosis framework for the small amount of target data based on transfer learning, using a modified TrAdaBoost algorithm and convolutional neural networks. First, the massive source data with different distributions is added to the target data as the training data. Then, a convolutional neural network is selected as the base learner and the modified TrAdaBoost algorithm is employed for the weight update of each training sample to form a stronger diagnostic model. The whole proposition is experimentally demonstrated and discussed by carrying out the tests of six three-phase induction motors under different operating conditions and fault types. Results show that compared with other methods, the proposed framework can achieve the highest fault diagnostic accuracy with inadequate target data.


2020 ◽  
Vol 21 ◽  
Author(s):  
Roberto Gabbiadini ◽  
Eirini Zacharopoulou ◽  
Federica Furfaro ◽  
Vincenzo Craviotto ◽  
Alessandra Zilli ◽  
...  

Background: Intestinal fibrosis and subsequent strictures represent an important burden in inflammatory bowel disease (IBD). The detection and evaluation of the degree of fibrosis in stricturing Crohn’s disease (CD) is important to address the best therapeutic strategy (medical anti-inflammatory therapy, endoscopic dilation, surgery). Ultrasound elastography (USE) is a non-invasive technique that has been proposed in the field of IBD for evaluating intestinal stiffness as a biomarker of intestinal fibrosis. Objective: The aim of this review is to discuss the ability and current role of ultrasound elastography in the assessment of intestinal fibrosis. Results and Conclusion: Data on USE in IBD are provided by pilot and proof-of-concept studies with small sample size. The first type of USE investigated was strain elastography, while shear wave elastography has been introduced lately. Despite the heterogeneity of the methods of the studies, USE has been proven to be able to assess intestinal fibrosis in patients with stricturing CD. However, before introducing this technique in current practice, further studies with larger sample size and homogeneous parameters, testing reproducibility, and identification of validated cut-off values are needed.


Author(s):  
Jonah T Hansen ◽  
Luca Casagrande ◽  
Michael J Ireland ◽  
Jane Lin

Abstract Statistical studies of exoplanets and the properties of their host stars have been critical to informing models of planet formation. Numerous trends have arisen in particular from the rich Kepler dataset, including that exoplanets are more likely to be found around stars with a high metallicity and the presence of a “gap” in the distribution of planetary radii at 1.9 R⊕. Here we present a new analysis on the Kepler field, using the APOGEE spectroscopic survey to build a metallicity calibration based on Gaia, 2MASS and Strömgren photometry. This calibration, along with masses and radii derived from a Bayesian isochrone fitting algorithm, is used to test a number of these trends with unbiased, photometrically derived parameters, albeit with a smaller sample size in comparison to recent studies. We recover that planets are more frequently found around higher metallicity stars; over the entire sample, planetary frequencies are 0.88 ± 0.12 percent for [Fe/H] < 0 and 1.37 ± 0.16 percent for [Fe/H] ≥ 0 but at two sigma we find that the size of exoplanets influences the strength of this trend. We also recover the planet radius gap, along with a slight positive correlation with stellar mass. We conclude that this method shows promise to derive robust statistics of exoplanets. We also remark that spectrophotometry from Gaia DR3 will have an effective resolution similar to narrow band filters and allow to overcome the small sample size inherent in this study.


Sign in / Sign up

Export Citation Format

Share Document