Heterogeneous graph neural networks with denoising for graph embeddings

2021 ◽  
pp. 107899
Author(s):  
Xinrui Dong ◽  
Yijia Zhang ◽  
Kuo Pang ◽  
Fei Chen ◽  
Mingyu Lu
2021 ◽  
Vol 14 (5) ◽  
pp. 730-742
Author(s):  
Chi Thang Duong ◽  
Trung Dung Hoang ◽  
Hongzhi Yin ◽  
Matthias Weidlich ◽  
Quoc Viet Hung Nguyen ◽  
...  

Queries to detect isomorphic subgraphs are important in graph-based data management. While the problem of subgraph isomorphism search has received considerable attention for the static setting of a single query, or a batch thereof, existing approaches do not scale to a dynamic setting of a continuous stream of queries. In this paper, we address the scalability challenges induced by a stream of subgraph isomorphism queries by caching and re-use of previous results. We first present a novel subgraph index based on graph embeddings that serves as the foundation for efficient stream processing. It enables not only effective caching and re-use of results, but also speeds-up traditional algorithms for subgraph isomorphism in case of cache misses. Moreover, we propose cache management policies that incorporate notions of reusability of query results. Experiments using real-world datasets demonstrate the effectiveness of our approach in handling isomorphic subgraph search for streams of queries.


2020 ◽  
Author(s):  
Artur Schweidtmann ◽  
Jan Rittig ◽  
Andrea König ◽  
Martin Grohe ◽  
Alexander Mitsos ◽  
...  

<div>Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.</div>


2020 ◽  
Author(s):  
Zheng Lian ◽  
Jianhua Tao ◽  
Bin Liu ◽  
Jian Huang ◽  
Zhanlei Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document