scholarly journals Aliasing and oblique dual pair designs for consistent sampling

2015 ◽  
Vol 487 ◽  
pp. 112-145 ◽  
Author(s):  
María J. Benac ◽  
Pedro G. Massey ◽  
Demetrio Stojanoff
Keyword(s):  
Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1055
Author(s):  
Stjepan Meljanac ◽  
Anna Pachoł

A Snyder model generated by the noncommutative coordinates and Lorentz generators closes a Lie algebra. The application of the Heisenberg double construction is investigated for the Snyder coordinates and momenta generators. This leads to the phase space of the Snyder model. Further, the extended Snyder algebra is constructed by using the Lorentz algebra, in one dimension higher. The dual pair of extended Snyder algebra and extended Snyder group is then formulated. Two Heisenberg doubles are considered, one with the conjugate tensorial momenta and another with the Lorentz matrices. Explicit formulae for all Heisenberg doubles are given.


2019 ◽  
Vol 29 (8) ◽  
pp. 1275-1308 ◽  
Author(s):  
Ross Horne ◽  
Alwen Tiu

AbstractThis paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder.


1992 ◽  
Vol 34 (2) ◽  
pp. 175-188
Author(s):  
Neill Robertson

By the term “locally convex space”, we mean a locally convex Hausdorff topological vector space (see [17]). We shall denote the algebraic dual of a locally convex space E by E*, and its topological dual by E′. It is convenient to think of the elements of E as being linear functionals on E′, so that E can be identified with a subspace of E′*. The adjoint of a continuous linear map T:E→F will be denoted by T′:F′→E′. If 〈E, F〈 is a dual pair of vector spaces, then we shall denote the corresponding weak, strong and Mackey topologies on E by α(E, F), β(E, F) and μ(E, F) respectively.


Author(s):  
Johann Boos ◽  
Toivo Leiger

The paper aims to develop for sequence spacesEa general concept for reconciling certain results, for example inclusion theorems, concerning generalizations of the Köthe-Toeplitz dualsE×(×∈{α,β})combined with dualities(E,G),G⊂E×, and theSAK-property (weak sectional convergence). TakingEβ:={(yk)∈ω:=𝕜ℕ|(ykxk)∈cs}=:Ecs, wherecsdenotes the set of all summable sequences, as a starting point, then we get a general substitute ofEcsby replacingcsby any locally convex sequence spaceSwith sums∈S′(in particular, a sum space) as defined by Ruckle (1970). This idea provides a dual pair(E,ES)of sequence spaces and gives rise for a generalization of the solid topology and for the investigation of the continuity of quasi-matrix maps relative to topologies of the duality(E,Eβ). That research is the basis for general versions of three types of inclusion theorems: two of them are originally due to Bennett and Kalton (1973) and generalized by the authors (see Boos and Leiger (1993 and 1997)), and the third was done by Große-Erdmann (1992). Finally, the generalizations, carried out in this paper, are justified by four applications with results around different kinds of Köthe-Toeplitz duals and related section properties.


Author(s):  
YONINA C. ELDAR ◽  
TOBIAS WERTHER

We introduce a general framework for consistent linear reconstruction in infinite-dimensional Hilbert spaces. We study stable reconstructions in terms of Riesz bases and frames, and generalize the notion of oblique dual frames to infinite-dimensional frames. As we show, the linear reconstruction scheme coincides with the so-called oblique projection, which turns into an ordinary orthogonal projection when adapting the inner product. The inner product of interest is, in general, not unique. We characterize the inner products and corresponding positive operators for which the new geometrical interpretation applies.


Author(s):  
Alina Dobrogowska ◽  
Anatol Odzijewicz
Keyword(s):  

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Ralph Blumenhagen ◽  
Benjamin Jurke ◽  
Thorsten Rahn

Novel nonstandard techniques for the computation of cohomology classes on toric varieties are summarized. After an introduction of the basic definitions and properties of toric geometry, we discuss a specific computational algorithm for the determination of the dimension of line-bundle-valued cohomology groups on toric varieties. Applications to the computation of chiral massless matter spectra in string compactifications are discussed, and using the software packagecohomCalg, its utility is highlighted on a new target space dual pair of(0,2)heterotic string models.


Sign in / Sign up

Export Citation Format

Share Document