scholarly journals The rank of a complex unit gain graph in terms of the matching number

2020 ◽  
Vol 589 ◽  
pp. 158-185 ◽  
Author(s):  
Shengjie He ◽  
Rong-Xia Hao ◽  
Fengming Dong
Keyword(s):  
2019 ◽  
Vol 342 (3) ◽  
pp. 760-767
Author(s):  
Xinmin Hou ◽  
Lei Yu ◽  
Jun Gao ◽  
Boyuan Liu

2009 ◽  
Vol 309 (12) ◽  
pp. 4176-4180 ◽  
Author(s):  
Niranjan Balachandran ◽  
Niraj Khare
Keyword(s):  

10.37236/2479 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Michal Kotrbčík ◽  
Martin Škoviera

We study the interplay between the maximum genus of a graph and bases of its cycle space via the corresponding intersection graph. Our main results show that the matching number of the intersection graph is independent of the basis precisely when the graph is upper-embeddable, and completely describe the range of matching numbers when the graph is not upper-embeddable. Particular attention is paid to cycle bases consisting of fundamental cycles with respect to a given spanning tree. For $4$-edge-connected graphs, the intersection graph with respect to any spanning tree (and, in fact, with respect to any basis) has either a perfect matching or a matching missing exactly one vertex. We show that if a graph is not $4$-edge-connected, different spanning trees may lead to intersection graphs with different matching numbers. We also show that there exist $2$-edge connected graphs for which the set of values of matching numbers of their intersection graphs contains arbitrarily large gaps.


Author(s):  
Saieed Akbari ◽  
Abdullah Alazemi ◽  
Milica Andjelic

The energy of a graph G, ?(G), is the sum of absolute values of the eigenvalues of its adjacency matrix. The matching number ?(G) is the number of edges in a maximum matching. In this paper, for a connected graph G of order n with largest vertex degree ? ? 6 we present two new upper bounds for the energy of a graph: ?(G) ? (n-1)?? and ?(G) ? 2?(G)??. The latter one improves recently obtained bound ?(G) ? {2?(G)?2?e + 1, if ?e is even; ?(G)(? a + 2?a + ?a-2?a), otherwise, where ?e stands for the largest edge degree and a = 2(?e + 1). We also present a short proof of this result and several open problems.


Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.


2018 ◽  
Vol 67 (12) ◽  
pp. 2565-2574 ◽  
Author(s):  
Jie Xue ◽  
Mingqing Zhai ◽  
Jinlong Shu
Keyword(s):  

Author(s):  
P. Soorya ◽  
K. A. Germina

Let [Formula: see text] be a simple, connected graph of order [Formula: see text] and size [Formula: see text] Then, [Formula: see text] is said to be edge [Formula: see text]-choosable, if there exists a collection of subsets of the edge set, [Formula: see text] of cardinality [Formula: see text] such that [Formula: see text] whenever [Formula: see text] and [Formula: see text] are incident. This paper initiates a study on edge [Formula: see text]-choosability of certain fundamental classes of graphs and determines the maximum value of [Formula: see text] for which the given graph [Formula: see text] is edge [Formula: see text]-choosable. Also, in this paper, the relation between edge choice number and other graph theoretic parameters is discussed and we have given a conjecture on the relation between edge choice number and matching number of a graph.


Sign in / Sign up

Export Citation Format

Share Document