scholarly journals Upper bounds on the energy of graphs in terms of matching number

Author(s):  
Saieed Akbari ◽  
Abdullah Alazemi ◽  
Milica Andjelic

The energy of a graph G, ?(G), is the sum of absolute values of the eigenvalues of its adjacency matrix. The matching number ?(G) is the number of edges in a maximum matching. In this paper, for a connected graph G of order n with largest vertex degree ? ? 6 we present two new upper bounds for the energy of a graph: ?(G) ? (n-1)?? and ?(G) ? 2?(G)??. The latter one improves recently obtained bound ?(G) ? {2?(G)?2?e + 1, if ?e is even; ?(G)(? a + 2?a + ?a-2?a), otherwise, where ?e stands for the largest edge degree and a = 2(?e + 1). We also present a short proof of this result and several open problems.

10.37236/4919 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaolin Chen ◽  
Xueliang Li ◽  
Huishu Lian

Let $G$ be a simple graph with no even cycle, called an odd-cycle graph. Cavers et al. [Linear Algebra Appl. 436(12):4512-1829, 2012] showed that the spectral radius of $G^\sigma$ is the same for every orientation $\sigma$ of $G$, and equals the maximum matching root of $G$. They proposed a conjecture that the graphs which attain the maximum skew spectral radius among the odd-cycle graphs $G$ of order $n$ are isomorphic to the odd-cycle graph with one vertex degree $n-1$ and size $m=\lfloor 3(n-1)/2\rfloor$. By using the Kelmans transformation, we give a proof to the conjecture. Moreover, sharp upper bounds of the maximum matching roots of the odd-cycle graphs with given order $n$ and size $m$ are given and extremal graphs are characterized.


Filomat ◽  
2014 ◽  
Vol 28 (3) ◽  
pp. 579-590 ◽  
Author(s):  
Mingqiang An ◽  
Liming Xiong ◽  
Kinkar Das

The degree distance (DD), which is a weight version of the Wiener index, defined for a connected graph G as vertex-degree-weighted sum of the distances, that is, DD(G) = ?{u,v}?V(G)[dG(u)+dG(v)]d[u,v|G), where dG(u) denotes the degree of a vertex u in G and d(u,v|G) denotes the distance between two vertices u and v in G: In this paper, we establish two upper bounds for the degree distances of four sums of two graphs in terms of other indices of two individual graphs.


Author(s):  
S. Yahya Mohamed ◽  
A. Mohamed Ali

In this paper, the notion of energy extended to spherical fuzzy graph. The adjacency matrix of a spherical fuzzy graph is defined and we compute the energy of a spherical fuzzy graph as the sum of absolute values of eigenvalues of the adjacency matrix of the spherical fuzzy graph. Also, the lower and upper bounds for the energy of spherical fuzzy graphs are obtained.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


Author(s):  
P. Soorya ◽  
K. A. Germina

Let [Formula: see text] be a simple, connected graph of order [Formula: see text] and size [Formula: see text] Then, [Formula: see text] is said to be edge [Formula: see text]-choosable, if there exists a collection of subsets of the edge set, [Formula: see text] of cardinality [Formula: see text] such that [Formula: see text] whenever [Formula: see text] and [Formula: see text] are incident. This paper initiates a study on edge [Formula: see text]-choosability of certain fundamental classes of graphs and determines the maximum value of [Formula: see text] for which the given graph [Formula: see text] is edge [Formula: see text]-choosable. Also, in this paper, the relation between edge choice number and other graph theoretic parameters is discussed and we have given a conjecture on the relation between edge choice number and matching number of a graph.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Zheng-Qing Chu ◽  
Saima Nazeer ◽  
Tariq Javed Zia ◽  
Imran Ahmed ◽  
Sana Shahid

The energy of a simple connected graph G is equal to the sum of the absolute value of eigenvalues of the graph G where the eigenvalue of a graph G is the eigenvalue of its adjacency matrix AG. Ultimately, scores of various graph energies have been originated. It has been shown in this paper that the different graph energies of the regular splitting graph S′G is a multiple of corresponding energy of a given graph G.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yajing Wang ◽  
Yubin Gao

Spectral graph theory plays an important role in engineering. Let G be a simple graph of order n with vertex set V=v1,v2,…,vn. For vi∈V, the degree of the vertex vi, denoted by di, is the number of the vertices adjacent to vi. The arithmetic-geometric adjacency matrix AagG of G is defined as the n×n matrix whose i,j entry is equal to di+dj/2didj if the vertices vi and vj are adjacent and 0 otherwise. The arithmetic-geometric spectral radius and arithmetic-geometric energy of G are the spectral radius and energy of its arithmetic-geometric adjacency matrix, respectively. In this paper, some new upper bounds on arithmetic-geometric energy are obtained. In addition, we present the Nordhaus–Gaddum-type relations for arithmetic-geometric spectral radius and arithmetic-geometric energy and characterize corresponding extremal graphs.


Sign in / Sign up

Export Citation Format

Share Document