Genistein attenuates D-galactose-induced oxidative damage through decreased reactive oxygen species and NF-κB binding activity in neuronal PC12 cells

Life Sciences ◽  
2011 ◽  
Vol 88 (1-2) ◽  
pp. 82-88 ◽  
Author(s):  
Huei-Min Hsieh ◽  
Wen-Mein Wu ◽  
Miao-Lin Hu
2020 ◽  
Vol 21 (5) ◽  
pp. 477-498
Author(s):  
Yongfeng Chen ◽  
Xingjing Luo ◽  
Zhenyou Zou ◽  
Yong Liang

Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients’ life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.


2001 ◽  
Vol 78 (3) ◽  
pp. 600-610 ◽  
Author(s):  
Su Ryeon Seo ◽  
Seon Ah Chong ◽  
Syng-Ill Lee ◽  
Jee Young Sung ◽  
Young Soo Ahn ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
pp. 76-83
Author(s):  
Chi-Sen Chang ◽  
Yuh-Chiang Shen ◽  
Chi-Wen Juan ◽  
Chia-Lin Chang ◽  
Po-Kai Lin

The neuroprotective mechanisms of Crataegus pinnatifida extracts and crataegolic acid were studied using paraquat induced cytotoxicity in PC12 cells. C. pinnatifida extracts were prepared using hexane, ethyl acetate, and 95% ethanol. Additionally, crataegolic acid (also known as maslinic acid) was found in C. pinnatifida extracts. Assessment methods included the examinations of cytotoxicity, intracellular reactive oxygen species and calcium changes, activity of caspase-3 and α-synuclein, apoptotic cell death, and the expression levels of the B-cell lymphoma 2 (Bcl-2) and BCL2-associated X (Bax) proteins to investigate the neuroprotective mechanisms of C. pinnatifida extracts and its active component, crataegolic acid. The three extracts and crataegolic acid exhibited potent neuroprotective actions against paraquat induced PC12 cell apoptosis at 5–20µg/mL and 80–100µM concentrations, respectively. The key protective mechanisms included decreasing cell apoptosis, upregulating Bcl-2 protein levels, and downregulating Bax protein levels. The 95% ethanol extract also decreased paraquat induced reactive oxygen species production, calcium overloading, and caspase-3 and α-synuclein activities. The beneficial effects of these extracts could be explained by the active component, crataegolic acid that also inhibited paraquat-induced apoptosis through the suppression of reactive oxygen species generation and the caspase-3 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document