phenylethyl isothiocyanate
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 5)

H-INDEX

24
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Ezequiel R. Coscueta ◽  
Ana Sofia Sousa ◽  
Celso A. Reis ◽  
Manuela Pintado

AbstractPhenylethyl isothiocyanate (PEITC), a chemopreventive compound, is highly reactive due to its considerably electrophilic nature. Furthermore, it is hydrophobic and has low stability, bioavailability and bioaccessibility, restricting its use in biomedical and nutraceutical or food applications. Thus, the encapsulation of this agent has the function of overcoming these limitations, promoting its solubility in water, and stabilizing it, preserving its bioactivity. So, polymeric microparticles were developed using chitosan-olive oil-PEITC systems. For this, an optimisation process (factors: olive oil: chitosan ratio and PEITC: chitosan ratio) were implemented through a central composite design. The responses were: the particle size, zeta-potential, polydisperse index, and entrapment efficiency. The optimal formulation was further characterized by FTIR and biocompatibility in Caco-2 cells. Optimal conditions were olive oil: chitosan and PEITC: chitosan ratios of 1.46 and 0.25, respectively. These microparticles had a size of 629 nm, a zeta-potential of 32.3 mV, a polydispersity index of 0.329, and an entrapment efficiency of 98.49%. We found that the inclusion process affected the optical behaviour of the PEITC, as well as the microparticles themselves and their interaction with the medium. Furthermore, the microparticles did not show cytotoxicity within the therapeutic values of PEITC. Thus, PEITC was microencapsulated with characteristics suitable for potential biomedical, nutraceutical and food applications.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 698
Author(s):  
Ezequiel R. Coscueta ◽  
Celso A. Reis ◽  
Manuela Pintado

Phenylethyl isothiocyanate (PEITC) was reported as a useful antioxidant, anti-inflammatory, and chemopreventive agent. Due to technological and stability issues, it is necessary to be able to extract PEITC from its natural matrix (watercress) through sustainable and scalable methodologies. In this article, we explored, for the first time, the extractive capacity of aqueous micellar systems (AMSs) of two non-ionic surfactants. For this, we compared the AMSs with conventional organic solvents. Furthermore, we developed and optimised a new integral PEITC production and extraction process by a multifactorial experimental design. Finally, we analysed the antioxidant capacity by the oxygen radical absorbance capacity (ORAC) and ABTS methods. As results, the AMSs were able to extract PEITC at the same level as the tested conventional solvents. In addition, we optimised by response surface methodology the integrated process (2.0% m/m, 25.0 °C, pH 9.0), which was equally effective (ca. 2900 µg PEITC/g watercress), regardless of the surfactant used. The optimal extracts showed greater antioxidant capacity than pure PEITC, due to other antioxidant compounds extracted in the process. In conclusion, by the present work, we developed an innovative cost-effective and low environmental impact process for obtaining PEITC extracts from watercress by-products.


2020 ◽  
Vol 10 (10) ◽  
pp. 3520
Author(s):  
Ivan Schlembach ◽  
Andreas Uebachs ◽  
Tim Caspers ◽  
Athanassios Fragoulis ◽  
Alan J. Slusarenko ◽  
...  

The oxidative stress response (OSR) in yeast is under the control of oxidation-sensitive cysteines in the Yap1p transcription factor, and fusion of the Yap1p-dependent OS-induced promoter of the YKL071w gene (OSI1) to a luciferase coding sequence makes a sensitive reporter for OS induced by electrophiles. In mammalian cells, the OSR induced by electrophiles is coordinated in a mechanistically similar way via oxidation-sensitive cysteines in the kelch-like ECH-associated protein 1 (Keap1)– nuclear factor erythroid 2-related factor 2 / antioxidant response element ( Nrf2/ARE) system. Many electrophilic oxidants have already been independently shown to trigger both the Yap1 and Keap1 systems. Here, we investigated the responses of Yap1 and Keap1 reporters to sulforaphane (SFN), allyl isothiocyanate (AITC), phenylethyl isothiocyanate (PEITC), previously known to stimulate Keap1–Nrf2/ARE but not known to activate Yap1, and as a positive control, allicin, previously reported to stimulate both Yap1 and Nrf2. We have compared the reciprocal responsiveness of the respective reporter systems and show that the yeast reporter system can have predictive value for electrophiles that stimulate the mammalian Keap1–Nrf2/ARE system.


Toxins ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 124
Author(s):  
Miao Zhang ◽  
Yongcai Li ◽  
Yang Bi ◽  
Tiaolan Wang ◽  
Yupeng Dong ◽  
...  

Black spot caused by Alternaria alternata is one of the important diseases of pear fruit during storage. Isothiocyanates are known as being strong antifungal compounds in vitro against different fungi. The aim of this study was to assess the antifungal effects of the volatile compound 2-phenylethyl isothiocyanate (2-PEITC) against A. alternata in vitro and in pear fruit, and to explore the underlying inhibitory mechanisms. The in vitro results showed that 2-PEITC significantly inhibited spore germination and mycelial growth of A. alternata—the inhibitory effects showed a dose-dependent pattern and the minimum inhibitory concentration (MIC) was 1.22 mM. The development of black spot rot on the pear fruit inoculated with A. alternata was also significantly decreased by 2-PEITC fumigation. At 1.22 mM concentration, the lesion diameter was only 39% of that in the control fruit at 7 days after inoculation. Further results of the leakage of electrolyte, increase of intracellular OD260, and propidium iodide (PI) staining proved that 2-PEITC broke cell membrane permeability of A. alternata. Moreover, 2-PEITC treatment significantly decreased alternariol (AOH), alternariolmonomethyl ether (AME), altenuene (ALT), and tentoxin (TEN) contents of A. alternata. Taken together, these data suggest that the mechanisms underlying the antifungal effect of 2-PEITC against A. alternata might be via reduction in toxin content and breakdown of cell membrane integrity.


2018 ◽  
Vol 9 (7) ◽  
pp. 3640-3656 ◽  
Author(s):  
Aroonwan Lam-ubol ◽  
Alison Lea Fitzgerald ◽  
Arnat Ritdej ◽  
Tawaree Phonyiam ◽  
Hui Zhang ◽  
...  

Sensory acceptable doses of PEITC are selectively toxic to oral cancer cells via ROS-mediated cell cycle arrest.


2016 ◽  
Vol 82 (8) ◽  
pp. 2372-2379 ◽  
Author(s):  
Cornelia U. Welte ◽  
Jamila F. Rosengarten ◽  
Rob M. de Graaf ◽  
Mike S. M. Jetten

ABSTRACTPectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae. To infect cabbage crops, these plant pathogens need to overcome the plant's antibacterial defense mechanisms, where isothiocyanates are liberated by hydrolysis of glucosinolates. Here, we found that aPectobacteriumisolate from the gut of cabbage root fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundantBrassicaroot metabolite 2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. ThePectobacteriumisolate harbored a naturally occurring mobile plasmid that contained asaxoperon. We hypothesized that SaxA was the enzyme responsible for the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It belongs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam antibiotics. We discovered that several copies of thesaxAgene are widespread in full and draftPectobacteriumgenomes and therefore hypothesize that SaxA might be a new pathogenicity factor of the genusPectobacterium, possibly compromising food preservation strategies using isothiocyanates.


2015 ◽  
Vol 18 (5) ◽  
pp. 1379-1390 ◽  
Author(s):  
Cornelia U. Welte ◽  
Rob M. de Graaf ◽  
Tijs J. M. van den Bosch ◽  
Huub J. M. Op den Camp ◽  
Nicole M. van Dam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document