Protective Effects of Crataegus pinnatifida Extracts and Crataegolic Acid Against Neurotoxicity of Paraquat in PC12 Cells

2021 ◽  
Vol 20 (1) ◽  
pp. 76-83
Author(s):  
Chi-Sen Chang ◽  
Yuh-Chiang Shen ◽  
Chi-Wen Juan ◽  
Chia-Lin Chang ◽  
Po-Kai Lin

The neuroprotective mechanisms of Crataegus pinnatifida extracts and crataegolic acid were studied using paraquat induced cytotoxicity in PC12 cells. C. pinnatifida extracts were prepared using hexane, ethyl acetate, and 95% ethanol. Additionally, crataegolic acid (also known as maslinic acid) was found in C. pinnatifida extracts. Assessment methods included the examinations of cytotoxicity, intracellular reactive oxygen species and calcium changes, activity of caspase-3 and α-synuclein, apoptotic cell death, and the expression levels of the B-cell lymphoma 2 (Bcl-2) and BCL2-associated X (Bax) proteins to investigate the neuroprotective mechanisms of C. pinnatifida extracts and its active component, crataegolic acid. The three extracts and crataegolic acid exhibited potent neuroprotective actions against paraquat induced PC12 cell apoptosis at 5–20µg/mL and 80–100µM concentrations, respectively. The key protective mechanisms included decreasing cell apoptosis, upregulating Bcl-2 protein levels, and downregulating Bax protein levels. The 95% ethanol extract also decreased paraquat induced reactive oxygen species production, calcium overloading, and caspase-3 and α-synuclein activities. The beneficial effects of these extracts could be explained by the active component, crataegolic acid that also inhibited paraquat-induced apoptosis through the suppression of reactive oxygen species generation and the caspase-3 signaling pathway.

2018 ◽  
Vol 36 ◽  
pp. 48-56 ◽  
Author(s):  
Meiaoxue Han ◽  
Renjun Wang ◽  
Ning Ding ◽  
Xiuxia Liu ◽  
Ningning Zheng ◽  
...  

2021 ◽  
Vol 49 (2) ◽  
pp. 030006052199331
Author(s):  
Caiqin Sun ◽  
Xuesong Zhang ◽  
Fei Yu ◽  
Chen Liu ◽  
Fangbin Hu ◽  
...  

Objective Myocardial ischemia/reperfusion (I/R) injury causes various severe heart diseases, including myocardial infarction. This study aimed to determine the therapeutic effect of atractylenolide I (ATR-I), which is an active ingredient isolated from Atractylodes macrocephala, on myocardial I/R injury. Methods Male Sprague-Dawley rats were randomly allocated to the five following groups (nine rats/group): control, I/R, and I/R + ATR-I preconditioning (10, 50, and 250 µg). The effects of ATR-I on rats with I/R injury were verified in cardiomyocytes with hypoxia/reoxygenation. Production of reactive oxygen species was determined. The proliferative ability of cardiomyocytes was detected using the bromodeoxyuridine assay. Mitochondrial membrane potential was measured using flow cytometry. Cellular apoptosis was assessed by flow cytometry and the terminal dUTP‐digoxigenin nick end labeling assay. Results I/R and hypoxia/reoxygenation injury increased mitochondrial dysfunction and activated caspase-3 and Bax/B cell lymphoma 2 expression in vitro and in vivo. ATR-I pretreatment dose-dependently significantly attenuated myocardial apoptosis and suppressed oxidative stress as reflected by increased mitochondrial DNA copy number and superoxide dismutase activity, and decreased reactive oxygen species and Ca2+ content. Conclusion ATR-I protects against I/R injury by protecting mitochondrial function and inhibiting activation of caspase-3.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769596 ◽  
Author(s):  
Xiaoxiao Yao ◽  
Xiaoning Li ◽  
Dan Zhang ◽  
Yingjun Xie ◽  
Baozhen Sun ◽  
...  

ABT-737, a B-cell lymphoma 2 homology 3 mimetic, not only induces cell apoptosis by inhibiting the interaction of B-cell lymphoma 2 and Bax but also induces cell autophagy by interrupting the interaction of B-cell lymphoma 2 and Beclin1. Several recent studies have reported that ABT-737 has antitumor efficacy in diverse cancers. However, another study showed that hepatocellular carcinoma cells with high B-cell lymphoma 2 expression were resistant to ABT-737 compared to hepatocellular carcinoma cells with low B-cell lymphoma 2 expression. It was also found that ABT-737-induced autophagy is crucial for drug resistance. Here, we observed that of B-cell lymphoma 2 expression in Adriamycin-resistant human hepatocellular carcinoma HepG2/ADM cells is higher than that in human hepatocellular carcinoma HepG2 cells. Therefore, we further confirmed the mechanism and effect of autophagy induced by ABT-737 on apoptosis in HepG2/ADM cells with high B-cell lymphoma 2 expression. Our results showed that ABT-737 induced apoptosis and autophagy in time- and dose-dependent manner in HepG2/ADM cells, and this ABT-737-induced autophagy was Beclin1-dependent. In addition, we demonstrated that ABT-737 induced reactive oxygen species-mediated autophagy, and the reactive oxygen species-inhibitor N-acetyl-l-cysteine suppressed the reactive oxygen species-induced autophagy and ABT-737-induced increase in HepG2/ADM cell apoptosis. Furthermore, autophagy inhibitors increased HepG2/ADM cell apoptosis. In conclusion, our study further confirms that Beclin1- and reactive oxygen species-dependent autophagy induced by ABT-737 also plays a protective function in HepG2/ADM cells, which show B-cell lymphoma 2 expression higher than that in HepG2 cells.


2013 ◽  
Vol 703 (1-3) ◽  
pp. 25-32 ◽  
Author(s):  
Gulzeb Aziz ◽  
Kristin Odlo ◽  
Trond V. Hansen ◽  
Ragnhild E. Paulsen ◽  
Gro H. Mathisen

Sign in / Sign up

Export Citation Format

Share Document