4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines

Life Sciences ◽  
2021 ◽  
pp. 120065
Author(s):  
Mariángeles Díaz ◽  
Matías Pibuel ◽  
Nadia Paglilla ◽  
Daniela Poodts ◽  
Elida Álvarez ◽  
...  
Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2610-2610 ◽  
Author(s):  
Swaroop Vakkalanka ◽  
Srikant Viswanadha ◽  
Robert Niecestro ◽  
Peter Sportelli ◽  
Michael Savona

Abstract Abstract 2610 Background: Acute leukemia, characterized by the presence clonal hematopoietic cells in peripheral blood and bone marrow, comprises approximately 40% of newly diagnosed leukemias. First line treatment for acute leukemias with multi-agent cytotoxic chemotherapy is usually associated with significant toxicity. Advances in therapy have been slow, and nearly all effective therapies lead to prolonged marrow suppression and toxicities associated with subsequent cytopenias. Herein, we describe the biological and pharmacokinetic properties of TGR-1202, a novel small molecule PI3Kδ inhibitor with scope to be developed as a safe and effective therapy for acute myeloid (AML) and lymphoblastic (ALL) leukemia. Material & Methods: Activity of TGR-1202 against individual isoforms of the PI3K enzyme was determined via enzyme, cellular, and whole blood based assays. Potency of the compound was confirmed via leukemic cell viability and Annexin V/PI staining besides testing for inhibition of pAkt, a downstream kinase regulating cell survival and growth. These assays were conducted with cell lines (CCRF-CEM, HL-60, and MOLT-4) and patient derived cells. Anti-tumor efficacy of the compound was studied in vivo with the subcutaneous MOLT-4 xenograft model. Lastly, ADME and pharmacokinetic properties of the molecule were determined. Results: TGR-1202 demonstrated significant potency against PI3Kδ (22.2 nM) with several fold selectivity over the α (>10000), β (>50), and γ (>48) isoforms. Additionally, the compound inhibited B-cell proliferation (24.3 nM) and FcεR1 induced CD63 expression in human whole blood basophils (68.2 nM) indicating specificity towards the delta isoform. Viability testing demonstrated that the compound caused a dose-dependent inhibition in growth of immortalized as well as patient-derived AML and ALL cells. Reduction in viability was accompanied by a reduction in pAKT (>50% @ 0.3–1 μM) along with a significant induction in apoptosis in both cell lines (CCRF-CEM, HL-60, and MOLT-4) and patient samples. In tumor xenografts, oral administration of 150 mg/kg RP5264 salt over a 25-day period resulted in significant inhibition (>50%) of MOLT-4 tumor growth in mice. Pharmacokinetic studies across species indicated good oral absorption (>40% bioavailability for mice, rat, and dog) with favorable plasma concentrations (3–10 μM @ 20 mg/kg for mice, rat, and dog) relevant for efficacy. In addition, early toxicological evaluation of the molecule indicated a MTD > 500 mg/kg over a 14-day treatment period in Balb/c mice. Conclusions: TGR-1202, primarily, through its activity at the δ isoform of PI3K, has activity in both myeloid and lymphoid acute leukemia cell lines and primary patient tumors. Further evaluation of this molecule in the treatment of AML and ALL is justified, and current testing of TGR-1202 in various leukemia cell lines and within a variety of primary leukemias is ongoing. Disclosures: Vakkalanka: Rhizen Pharmaceuticals S A: Employment, Equity Ownership. Viswanadha:Incozen Therapeutics: Employment. Niecestro:TG Therapeutics, Inc.: Consultancy, Equity Ownership. Sportelli:TG Therapeutics, Inc.: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1293-1293
Author(s):  
Daniela E. Egas Bejar ◽  
Joy M. Fulbright ◽  
Fernando F. Corrales-Medina ◽  
Mary E. Irwin ◽  
Blake Johnson ◽  
...  

Abstract Anthracyclines are among the most powerful drugs used for the treatment of leukemia, however their use has been associated with cardiotoxicity. Reactive oxygen species (ROS) are generated in both cancer and normal cells after anthracycline exposure and have been implicated in both early and late onset cardiotoxicity. Counteracting this ROS generation are intracellular antioxidants such as the ubiquitous antioxidant glutathione (GSH), levels of which are depleted upon anthracycline exposure. Basal expression of GSH pathway components and other antioxidants vary greatly between different cell types. Due to this differential expression of cellular antioxidants in cardiomyocytes versus leukemia cells, we posit that anthracyclines exert distinct effects on oxidative stress and consequent apoptosis induction in leukemia cells and nontransformed hematopoietic cells (PBMC) relative to cardiomyocytes. As a result, we expect potentially varied mechanisms of cell death induction in these cell lines after anthracycline treatment. To test this hypothesis, the acute leukemia cell lines Jurkat and ML-1 and the cardiomyocyte line H9C2 were used. Dose responses with the anthracyclines, doxorubicin and daunorubicin, were carried out and trypan blue exclusion and propidium iodide staining followed by flow cytometry were used to assess viability and DNA fragmentation respectively. Cardiomyocytes had a 25-150 fold higher IC50 value than the acute leukemia cell lines, indicating selectivity. To assess whether apoptosis was induced by anthracyclines, caspase 3 activity was measured and found to be increased at 24 hours in Jurkat cells which preceded decreases in viability, supporting an apoptotic mechanism of cell death. GSH levels also decreased markedly after 24 hours of treatment with anthracyclines in this cell line, however, a pan-caspase inhibitor did not block GSH depletion, indicating that these events occur independent of each other. To evaluate whether antioxidants conferred protection against loss of viability in all cell types, cells were pretreated for at least 30 minutes with antioxidants and then treated with doxorubicin and daunorubicin for 24 hours. Antioxidants used were N-acetylcysteine (NAC, a GSH precursor and amino acid source), GSH ethyl ester (cell permeable form of GSH), tiron (free radical scavenger) and trolox (a water soluble form of vitamin E). GSH ethylester did not prevent cytotoxicity of anthracyclines in acute leukemia lines or cardiomyocytes. Therefore boosting GSH levels in leukemia cells does not reverse cytotoxicity. Trolox, however, did block anthracycline induced cell death in ML-1 cells, suggesting that vitamin E supplementation would counteract leukemia cell specific effects of anthracyclines on AML cells. Tiron protected PBMC from doxorubicin cytotoxicity but did not protect leukemia cells or cardiomyocytes, hinting at a protective strategy for normal non-leukemia blood cells. Interestingly, NAC did not interfere with the cytotoxic effects of anthracyclines on acute leukemia cells or PBMC, but protected H9C2 cells from daunorubicin cytotoxicity. Taken together, these data reveal differential protective effects of antioxidants in cardiomyocytes and PBMCs relative to ALL and AML cells. Our work indicates that NAC can protect cardiomyocytes without interfering with anthracycline cytotoxicity in acute leukemia cells. In humans, one randomized control trial tested the addition of NAC to doxorubicin therapy, detecting no evidence of cardioprotective activity by chronic administration of NAC. However, the schedule used for administration of NAC in that study may not have been optimal, and biomarkers for oxidative stress reduction by NAC were not incorporated into the trial. Previously, other antioxidants have been used with very limited clinical success and possible contributing factors include inadequate sample size, choice of agent, dose used, duration of intervention and the lack of biomarker endpoints. Designing a cardioprotective and antioxidant strategy with attention to these factors may prove to be efficacious in protecting cardiac cells without interfering with the antitumoral effect of anthracyclines. To this end, our data suggests that trolox and vitamin E analogues should not be used in acute leukemia as they may interfere with the cytotoxic action of anthracyclines but NAC or cysteine may be used as cardioprotectants. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 45 (3) ◽  
pp. 567-574 ◽  
Author(s):  
Hilmar Quentmeier ◽  
Wilhelm G Dirks ◽  
Roderick AF Macleod ◽  
Julia Reinhardt ◽  
Margarete Zaborski ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4044-4044
Author(s):  
Blake S Moses ◽  
Jennifer Fox ◽  
Xiaochun Chen ◽  
Samantha McCullough ◽  
Sang Ngoc Tran ◽  
...  

Abstract Antimalarial artemisinins have broad antineoplastic activity in vitro, are well tolerated and inexpensive, and can be parenterally or orally administered in humans. Artemisinin-derived trioxane diphenylphosphate dimer 838 (ART838; a potent artemisinin-derivative) inhibited acute leukemia growth in vivo and in vitro, at doses where normal human CD34+ hematopoietic stem-progenitor cell clonogenicity was essentially unaffected (Fox et al, Oncotarget 2016, PMID: 26771236). In our focused drug combination screen for drugs that synergize with ART838, the only BCL2 inhibitors in the screen library of 111 emerging antineoplastic compounds, navitoclax (ABT737) and venetoclax (ABT199; FDA-approved), were identified as 2 of the top 3 candidates. Synergies between ART838 and BCL2 inhibitors were validated in multiple acute leukemia cell lines and primary cases. This ART838-BCL2 inhibitor synergy may be due to reduced levels of MCL1 protein that we and others have observed in multiple acute leukemia cell lines and primary cases treated with artemisinins (Budhraja et al, Clin Cancer Res 2017, PMID: 28974549). Treatment of acute leukemia xenografts with the ART838 plus ABT199 combination reduced leukemia growth rates and prolonged survivals, compared to vehicle or either ART838 or ABT199 alone. To add to the efficacy of this ART838 plus ABT199 treatment regimen, we sought to rationally add a third low-toxicity active antileukemic agent. Sorafenib (SOR; FDA-approved) inhibits multiple kinases which may mediate its antileukemic activity, with the importance of the targets varying from case to case; e.g. FLT3 is an important target in many AMLs. In addition, several reports have found that SOR reduces MCL1 protein stability and translation through inhibition of the ERK and PI3K pathways (Wang et al, Clin Cancer Res 2016, PMID: 26459180; Huber et al, Leukemia 2011, PMID: 21293487). In all acute leukemia cell lines tested, we observed large reductions in MCL1 protein levels with SOR treatment, which may further rationalize the addition of SOR to our ART838 plus ABT199 antileukemic regimen. We had previously observed strong in vitro synergy between ART838 and SOR (PMID: 26771236). Treatment of acute leukemia xenografts with the ART838 plus SOR combination reduced leukemia xenograft growth rates and prolonged survivals, compared to single drugs. Mice bearing luciferase-labelled acute leukemia xenografts were treated (PO daily x5) with single drug or 2-drug or 3-drug combinations of ART838, ABT199, and SOR, each at their individual maximally tolerated doses. Treatment with this 3-drug combination caused rapid regression of luciferase-labelled MV4;11 AML xenografts (Fig 1A). The 5-day treatment cycles were repeated every other week, and mice receiving this 3-drug combination survived >4 times longer than vehicle-treated mice (Fig 1B). Mouse body weights were stable during treatment. Although myelosuppression is the human clinical dose-limiting toxicity of each of these 3 drugs, mouse blood cell counts during 3-drug combination treatment were in the normal range. Treatment of a luciferase-labelled primary AML leukemia xenograft with this 3-drug combination reduced leukemia growth more than the single drugs or 2-drug combinations (Fig 1C). Assessment of efficacy and pharmacokinetics-pharmacodynamics against diverse acute leukemia xenografts will test this combination of ART838, ABT199 plus SOR as a rational low-toxicity drug triad for treatment of acute leukemias and potentially other cancers. Disclosures Fox: Intrexon Corporation: Employment. Tyner:Genentech: Research Funding; Janssen: Research Funding; AstraZeneca: Research Funding; Gilead: Research Funding; Incyte: Research Funding; Constellation: Research Funding; Array: Research Funding; Takeda: Research Funding; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Aptose: Research Funding. Civin:ConverGene LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; GPB Scientific LLC: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; 3DBioWorks Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; BD (Becton Dickinson): Honoraria.


2020 ◽  
Vol 17 (12) ◽  
Author(s):  
Rafael César Gonçalves Pereira ◽  
Fernanda Cristina Gontijo Evangelista ◽  
Valtair Severino Santos Júnior ◽  
Adriano Paula Sabino ◽  
Vinícius Gonçalves Maltarollo ◽  
...  

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13103-13103
Author(s):  
D. R. Budman ◽  
A. Calabro

13103 Background: The most combinations of anticancer drugs are based upon empiricism. The potential permutations of drugs overwhelm the clinical trials system. Acute leukemia is sensitive to a variety of agents but relapses are common. Targeted agents are attractive new venues of therapy both as single agents and in combination with older agents. Isobologram median effect analysis allows up to three agents to be studied together in vitro to identify interesting combinations. We evaluated a commercially available statin, fluvastatin, to block prenylation which affects a variety of pathways, rapamycin and its experimental analogue RAD001 as M-TOR inhibitors to block downstream of the AKT pathway, and cytotoxic agents. Methods: The human leukemia cell lines AML-193 and KG-1 were obtained from ATTC (Rockville, MD), fluvastatin and RAD001 from Novartis Pharma, and the other agents from Sigma-Aldrich (St. Louis, MO). The IC50 of the single agent was determined by a 72 hr incubation of log growth cells using a MTT assay and the EZ-ED50 program (Perrella Scientific, Conyers, CA). The dosages of all agents were at clinically achievable concentrations. All reported values were the means of at least 3 experiments with each study using 4 wells per point. For isobologram analysis, a minimum of 8 concentrations of drug mixtures were studied above and below the IC50. Median effect CI values less than 1 are synergistic. Results: Doublets of fluvastatin with Ara-C (0.7), daunomycin (0.4), idarubicin (0.7), RAD001 (0.5), or rapamycin (0.3) demonstrated synergy. Doublets of RAD001 with Ara-C (0.3), daunomycin (0.7), or idarubicin (0.5) demonstrated synergy. Triplets of RAD001/daunorubicin/Ara-C, RAD001/daunomycin/fluvastatin, and RAD001/Ara-C/idarubicin all demonstrated marked synergy in both cell lines. Conclusion: A new potential non classical combination for further investigation is RAD001 or rapamycin with an inhibitor of prenylation such as fluvastatin. Additional potential combinations include cytotoxics with either fluvastatin or RAD001, and triplet combinations. No significant financial relationships to disclose.


2021 ◽  
Vol 116 ◽  
pp. 105315
Author(s):  
Amanda Virtuoso Jacques ◽  
Natália Marcéli Stefanes ◽  
Laura Otto Walter ◽  
Daiane Mari Perondi ◽  
Fernanda da Luz Efe ◽  
...  

2013 ◽  
Vol 26 (12) ◽  
pp. 1904-1916 ◽  
Author(s):  
Karina Elisa Machado ◽  
Kely Navakoski de Oliveira ◽  
Haíra Maria Slobodianuk Andreossi ◽  
Lorena dos Santos Bubniak ◽  
Ana Carolina Rabello de Moraes ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3341-3341
Author(s):  
George S. Laszlo ◽  
Johnnie J. Orozco ◽  
Allie R. Kehret ◽  
Margaret C. Lunn ◽  
Donald K. Hamlin ◽  
...  

Abstract Background: Radioimmunotherapy (RIT) has long been pursued to improve outcomes in acute leukemia. Of current interest are alpha-particle emitting radionuclides as they deliver a very large amount of radiation over just a few cell diameters, enabling efficient and selective target cell kill. So far, alpha-emitters including astatine-211 (211At) have been primarily explored with monoclonal antibodies (mAbs) targeting CD45 or CD33 but their broad display on non-malignant target-expressing cells can lead to marked "on-target, off tumor cell" toxicities. To overcome this limitation, we developed a novel form of 211At-based RIT targeting CD123. CD123 is displayed widely on acute leukemia cells, including underlying leukemic stem cells, but is expressed only on a discrete subset of normal hematopoietic cells and is virtually absent on non-blood cells. Methods: We immunized BALB/c mice with peptides consisting of the extracellular domain of human CD123 to generate anti-CD123 mAbs. Flow cytometry-based assays with human acute leukemia cell lines were used to characterize binding of hybridoma supernatants and mAbs to CD123. mAbs were conjugated with isothiocyantophenethyl-ureido-closo-decaborate(2-) (B10), a boron cage molecule for subsequent astatination, and were then labeled with 211At. In vivo leukemia cell targeting ("biodistribution") and efficacy studies were conducted in immunodeficient NOD-Rag1 null IL2rɣ null/J (NRG) mice xenografted with MOLM-13 cells, a CD123+ human acute myeloid leukemia cell line. Results: Based on initial hybridoma screening studies, we selected 4 mAbs (10C4, 5G4, 11F11, and 1H8) for further characterization. Phenotyping studies with CD123+ and CD123- human acute leukemia cell lines (including CD123+ cell lines in which CD123 was deleted via CRISPR/Cas9) confirmed specific binding of all mAbs to human CD123 (binding intensity: 10C4>5G4=11F11=1H8), with 10C4 yielding a higher median fluorescence intensity than the widely used commercial anti-CD123 mAb clones, 7G3 and 6H6 (Figure 1). In vitro internalization with a panel of human acute leukemia cell lines studies demonstrated uptake of all mAbs by CD123+ target cells with a kinetic slower than that for anti-CD33 antibodies (typically, 30-50% of the anti-CD123 mAb internalized over 2-4 hours). All 4 anti-CD123 mAbs could be conjugated to B10 and subsequently labeled with 211At. Unlike a non-binding 211At-labeled control mAb, 211At-labeled anti-CD123 mAbs showed uptake at MOLM-13 flank tumors in NRG mice carrying MOLM-13 xenografts. After additional leukemia cell targeting studies to optimize the dosing of 10C4, we conducted proof-of-concept efficacy studies in NRG mice injected intravenously with luciferase-transduced MOLM-13 cells (disseminated leukemia model). Animals were either untreated or treated with 10 µCi, 20 µCi, or 40 µCi of 211At-labeled 10C4-B10 mAb (9-11 animals/group). This was followed by the infusion of bone marrow cells from donor mice as stem cell support 3 days later. As shown in Figure 2 and Figure 3, 211At-10C4-B10 led to a dose dependent decrease in tumor burden. Further, the treatment significantly prolonged survival compared to untreated animals (median survival: 49 days [40 µCi of 211At] vs. 31 days [10 µCi of 211At] vs. 21 days [Ctrl]; P<0.0001 for Ctrl vs. 10 µCi, P<0.004 for 10 µCi vs. 40 µCi), demonstrating potent in vivo anti-leukemia efficacy of a single dose of 211At-CD123 RIT. Conclusion: Our data support the further development of 211At-CD123 RIT for the treatment of patients with acute leukemia and other CD123+ hematologic malignancies. Figure 1 Figure 1. Disclosures Green: Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Cellectar Biosciences: Research Funding; GSK: Membership on an entity's Board of Directors or advisory committees; JANSSEN Biotech: Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno Therapeutics: Patents & Royalties, Research Funding; Legend Biotech: Consultancy; Neoleukin Therapeutics: Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees, Research Funding; SpringWorks Therapeutics: Research Funding. Walter: Kite: Consultancy; Janssen: Consultancy; Genentech: Consultancy; BMS: Consultancy; Astellas: Consultancy; Agios: Consultancy; Amphivena: Consultancy, Other: ownership interests; Selvita: Research Funding; Pfizer: Consultancy, Research Funding; Jazz: Research Funding; Macrogenics: Consultancy, Research Funding; Immunogen: Research Funding; Celgene: Consultancy, Research Funding; Aptevo: Consultancy, Research Funding; Amgen: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4936-4936
Author(s):  
Pritesh R. Patel ◽  
Dolores Mahmud ◽  
Damiano Rondelli

Abstract The alkylator Busulfan (Bu) is used in conditioning regimens for acute leukemia prior to allogeneic stem cell transplant. Multiple DNA repair mechanisms including mismatch repair and base excision repair have been implicated in resistance to Bu. The enzyme PARP is central to base excision repair. We hypothesized that treatment of acute leukemia cell lines with both ABT888 (Veliparib), an inhibitor of PARP 1 and 2, and Bu would lead to synergistic cell kill and that this effect is maximal in mismatch repair deficient cells. Two mismatch repair proficient cell lines (K562 and HL60) and 2 mismatch repair deficient cell lines (NB4 and REH) were treated with ABT888 alone, Bu alone or a combination of both. In single drug experiments, doses of drug treatment ranged from 0-400mcg/ml. In combination experiments a fixed dose of ABT888 of 1.25mcg/ml was utilized with Bu doses varying from 0-200mcg/ml. This dose of ABT888 was chosen as it approximated to patient blood levels in clinical trials. After 24 hours of treatment, cells were washed and resuspended in fresh medium. Proliferation of cells was measured by standard 3H-thymidine uptake assay at 48 hours. Sigmoidal dose response curves and GI50 values were then calculated. In addition, cells were tested for apoptosis by flow cytometry using activated caspase 3 and annexin/ PI staining at 24 and 48 hours after treatment. All 4 cell lines were found to be resistant to single agent ABT888. Despite mismatch repair deficiency in REH cells, therapeutic doses of ABT888 did not cause significant decreases in proliferation. The effect of ABT888 was, as expected, much less evident in the mismatch repair proficient K562 cells. These cells were also relatively resistant to single agent Bu in vitro. The combination of Bu and ABT888 was synergistic in all cell lines with GI50 (micromoles/ml) for Bu decreasing from 67.8 to 45.7 in K562, from 23.3 to 8.0 in HL60, from 46.6 to 36.1 in NB4 and from 34.4 to 17.0 in REH cells. The Combination Index was <1 in all cell lines indicating synergy. Dose Reduction Index, indicating the factor by which the dose of Bu can be decreased to achieve the same treatment effect size, ranged from 1.45 to 3.1. The synergistic effect was greatest in the mismatch repair deficient cell line REH (Combination Index 0.53, Dose Reduction Index 3.1). As expected, the synergistic effect observed did not correlate with increased apoptotic death of leukemic cells implying an alternative mechanism for the derease in proliferation. To our knowledge, this is the first study to show synergy of a clinically available PARP inhibitor with Bu. We believe this data warrants further study with the potential clinical application of increasing the antileukemic effect of stem cell transplantation conditioned with Bu containing preparative regimens. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document