Tectonic evolution of the northeastern North China Craton: Constraints from geochronology and Sr–Nd–Hf–O isotopic data from Late Triassic intrusive rocks on Liaodong Peninsula, NE China

Lithos ◽  
2020 ◽  
Vol 362-363 ◽  
pp. 105489
Author(s):  
Yi-Kang Quan ◽  
De-Bin Yang ◽  
Mao-Song Mu ◽  
Le-Ran Hao ◽  
Hao-Tian Yang ◽  
...  
2020 ◽  
pp. 1-17
Author(s):  
Jin Liu ◽  
Jian Zhang ◽  
Chang-Qing Yin ◽  
Chang-Quan Cheng ◽  
Jia-Hui Qian ◽  
...  

Abstract A suite of Jurassic–Cretaceous migmatites was newly identified in the Liaodong Peninsula of the eastern North China Craton (NCC). Anatexis is commonly associated with crustal thickening. However, the newly identified migmatites were formed during strong lithospheric thinning accompanied by voluminous magmatism and intense deformation. Field investigations show that the migmatites are spatially associated with low-angle detachment faults. Numerous leucosomes occur either as isolated lenses or thin layers (dykes), parallel to or cross-cutting the foliation. Peritectic minerals such as titanite and sillimanite are distributed mainly along the boundaries of reactant minerals or are accumulated along the foliation. Most zircons show distinct core–rim structures, and the rims have low Th/U ratios (0.01–0.24). Zircon U–Pb dating results indicate that the protoliths of the migmatites were either the Late Triassic (224–221 Ma) diorites or metasedimentary rocks deposited sometime after c. 1857 Ma. The zircon overgrowth rims record crystallization ages of 173–161 Ma and 125 Ma, which represent the formation time of leucosomes. These ages are consistent with those reported magmatic events in the Liaodong Peninsula and surrounding areas. The leucosomes indicate a strong anatectic event during the Jurassic–Cretaceous period. Partial melting occurred through the breakdown of muscovite and biotite with the presence of water-rich fluid under a thermal anomaly regime. The possible mechanism that caused the 173–161 Ma and 125 Ma anatectic events was intimately related to the regional crustal extension during the lithospheric thinning of the NCC. Meanwhile, the newly generated melts further weakened the rigidity of the crust and enhanced the extension.


2020 ◽  
Vol 133 (1-2) ◽  
pp. 393-408 ◽  
Author(s):  
Zhiheng Ren ◽  
Wei Lin ◽  
Michel Faure ◽  
Lingtong Meng ◽  
Huabiao Qiu ◽  
...  

Abstract The Lushun-Dalian area of the South Liaodong Peninsula, in NE China, located in the SE margin of the North China Craton (NCC) exposes a suite of Middle-Late Proterozoic low-grade metamorphic sedimentary rocks which can be divided into a lower competent layer, a middle incompetent layer, and an upper competent layer on the basis of lithology and deformation style. Two stages of deformation recorded both in the metasedimentary rocks and a magmatic complex intruded in them indicate that the Lushun-Dalian area is a key region to decipher the Triassic–Jurassic tectonic evolution of the eastern NCC. The earliest D1 deformation mylonitized the magmatic complex and thrusted it northeastward over the low-grade metasedimentary rocks, in which a series of NE-verging folds and NE-directed brittle thrust faults developed. The D2 deformation erased the D1 fabrics in the incompetent layer by a top-to-the-NW ductile shearing and refolded the D1 fabrics in the lower and upper competent units, producing a series of km-scale SW-plunging folds. New zircon secondary ion mass spectrometry and laser ablation–inductively coupled plasma–mass spectrometry U-Pb ages from the magmatic complex and the granite porphyry dikes intruded in it, combined with the unconformity between the low-grade metasedimentary rocks and the Early Cretaceous volcanic rocks, indicate that D1 and D2 occurred after 211 Ma and before the Early Cretaceous. The decrease of the deformation intensity of D1 and D2 from the Lushun-Dalian area toward the interior of the NCC in the NE and NW directions suggests that D1 was the structural response in the overriding plate to the NCC-South China Block convergence during the Late Triassic to Early Jurassic, and D2 was the structural response to the northwestward subduction of the Paleo–Pacific plate beneath the NCC in the Middle-Late Jurassic. The superimposition of D2 on D1 recorded a significant tectonic transformation from the nearly E-W–trending Tethysian domain to the NE-SW–trending Pacific domain.


2021 ◽  
Vol 566 ◽  
pp. 120105
Author(s):  
Chao Wang ◽  
Shuguang Song ◽  
Li Su ◽  
Mark B. Allen ◽  
Jinlong Dong

Sign in / Sign up

Export Citation Format

Share Document