Petrogenesis of Late Triassic intrusive rocks in the northern Liaodong Peninsula related to decratonization of the North China Craton: Zircon U–Pb age and Hf–O isotope evidence

Lithos ◽  
2012 ◽  
Vol 153 ◽  
pp. 108-128 ◽  
Author(s):  
Jin-Hui Yang ◽  
Jin-Feng Sun ◽  
Ji-Heng Zhang ◽  
Simon A. Wilde
2020 ◽  
pp. 1-17
Author(s):  
Jin Liu ◽  
Jian Zhang ◽  
Chang-Qing Yin ◽  
Chang-Quan Cheng ◽  
Jia-Hui Qian ◽  
...  

Abstract A suite of Jurassic–Cretaceous migmatites was newly identified in the Liaodong Peninsula of the eastern North China Craton (NCC). Anatexis is commonly associated with crustal thickening. However, the newly identified migmatites were formed during strong lithospheric thinning accompanied by voluminous magmatism and intense deformation. Field investigations show that the migmatites are spatially associated with low-angle detachment faults. Numerous leucosomes occur either as isolated lenses or thin layers (dykes), parallel to or cross-cutting the foliation. Peritectic minerals such as titanite and sillimanite are distributed mainly along the boundaries of reactant minerals or are accumulated along the foliation. Most zircons show distinct core–rim structures, and the rims have low Th/U ratios (0.01–0.24). Zircon U–Pb dating results indicate that the protoliths of the migmatites were either the Late Triassic (224–221 Ma) diorites or metasedimentary rocks deposited sometime after c. 1857 Ma. The zircon overgrowth rims record crystallization ages of 173–161 Ma and 125 Ma, which represent the formation time of leucosomes. These ages are consistent with those reported magmatic events in the Liaodong Peninsula and surrounding areas. The leucosomes indicate a strong anatectic event during the Jurassic–Cretaceous period. Partial melting occurred through the breakdown of muscovite and biotite with the presence of water-rich fluid under a thermal anomaly regime. The possible mechanism that caused the 173–161 Ma and 125 Ma anatectic events was intimately related to the regional crustal extension during the lithospheric thinning of the NCC. Meanwhile, the newly generated melts further weakened the rigidity of the crust and enhanced the extension.


2021 ◽  
Vol 566 ◽  
pp. 120105
Author(s):  
Chao Wang ◽  
Shuguang Song ◽  
Li Su ◽  
Mark B. Allen ◽  
Jinlong Dong

2021 ◽  
Vol 37 (1) ◽  
pp. 231-252
Author(s):  
ZHANG Jian ◽  
◽  
LI HuaiKun ◽  
TIAN Hui ◽  
LIU Huan ◽  
...  

Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


2021 ◽  
Vol 58 (1) ◽  
pp. 50-66
Author(s):  
Yang Dong ◽  
Jingdang Liu ◽  
Yanfei Zhang ◽  
Shiyong Dou ◽  
Yanbin Li ◽  
...  

Mesozoic magmatic rocks are widely distributed in the North China Craton (NCC) and are crucial to understanding the timing, location, and geodynamic mechanisms of lithospheric thinning of the NCC. In this study, we report geochronological, petrogeochemical, and Lu–Hf isotopic data for adakitic granitoids from different parts of Xiuyan pluton in the Liaodong Peninsula, aiming to constrain their magma sources, petrogenesis, and tectonic implications. The adakites are metaluminous to weakly peraluminous and are classified as high-K calc-alkaline I-type granite with Early Cretaceous zircon U–Pb ages of 129–126 Ma. They exhibit adakite-like geochemical characteristics, such as high Sr content and low Yb and Y contents, coupled with high Sr/Y and no pronounced Eu anomalies. They are enriched in Rb, U, and light rare-earth elements and are depleted in Ta, Nb, P, and Ti. The adakites from the eastern part of the pluton have low εHf(t) values (–8.5 to –4.0) with old TDM2 ages (1.57–1.31 Ga), indicating they were derived from the lower crust containing juvenile mantle-derived materials. In contrast, adakites from the northern part of the pluton have lower εHf(t) values (–19.7 to –16.6) with older TDM2 ages (2.21–2.03 Ga), indicating that they were derived mainly from an ancient crust. Our results show that both adakitic magmas were derived from partial melting of delaminated lower crust. Their relatively high MgO and Ni contents and Mg# values indicate that the melts interacted with mantle peridotites. The lower crust delamination beneath the Liaodong Peninsula resulted from paleo-Pacific plate subduction during the Early Cretaceous, which resulted in thinning of Mesozoic crust in the Xiuyan area.


2018 ◽  
Vol 10 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Xianghong Meng ◽  
Yu Zhang ◽  
Duoyun Wang ◽  
Xue Zhang

AbstractLaser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating has been performed on detrital zircons from the Chunshuyao Formation sandstone of Yichuan Basin. The ages of 85 detrital zircon grains are divided into three groups: 252-290 Ma, 1740-2000 Ma, and 2400-2600 Ma. The lack of Early Paleozoic and Neoproterozoic U-Pb ages indicates that there is no input from the Qinling Orogen, because the Qinling Orogen is characterized by Paleozoic and Neoproterozoic material. In combination with previous research, we suggest that the source of the Chunshuyao Formation is most likely recycled from previous sedimentary rocks from the North China Craton. In the Late Triassic, the Funiu ancient land was uplifted which prevented source material from the Qinling Orogen. Owing to the Indosinian orogeny, the strata to the east of the North China Craton were uplifted and eroded. The Yichuan Basin received detrital material from the North China Craton.


Sign in / Sign up

Export Citation Format

Share Document