scholarly journals The Variscan subduction inheritance in the Southern Alps Sub-Continental Lithospheric Mantle: Clues from the Middle Triassic shoshonitic magmatism of the Dolomites (NE Italy)

Lithos ◽  
2020 ◽  
pp. 105856
Author(s):  
F. Casetta ◽  
R.B. Ickert ◽  
D.F. Mark ◽  
P.P. Giacomoni ◽  
C. Bonadiman ◽  
...  
2021 ◽  
Author(s):  
Federico Casetta ◽  
Massimo Coltorti ◽  
Ryan B. Ickert ◽  
Darren F Mark ◽  
Pier Paolo Giacomoni ◽  
...  

<p>The Mid-Triassic emplacement of shoshonitic magmas at the NE margin of the Adria plate in concomitance with extensional/transtensional tectonics is one of the most intriguing and peculiar aspects typifying the geodynamic evolution of the Western Tethyan realm. Although often hypothesized, the link between this magmatic event and the metasomatised Southern Alps Sub-Continental Lithospheric Mantle (SCLM) has never been constrained.</p><p>Geochemical and petrological analyses of lavas, dykes and ultramafic cumulates belonging to the shoshonitic magmatism of the Dolomites, coupled with pre-existing data on peridotite massifs (i.e. Finero, Balmuccia, Baldissero), were used to reconstruct the evolution of the Southern Alps SCLM between Carboniferous and Triassic. According to our model, a metasomatised amphibole + phlogopite-bearing spinel lherzolite, similar to the Finero phlogopite peridotite and likely generated by interaction between a depleted mantle and slab-derived components during the Variscan subduction, was able to produce magmas with orogenic-like affinity during Mid-Triassic. In this context, partial melting degrees of ca. 5-7% were required for producing primitive SiO<sub>2</sub>-saturated to -undersaturated melts with shoshonitic affinity (<sup>87</sup>Sr/<sup>86</sup>Sr<sub>i</sub> = 0.7032-0.7058; <sup>143</sup>Nd/<sup>144</sup>Nd<sub>i</sub> = 0.51219-0.51235; Mg #~ 70; ~1.1 wt% H<sub>2</sub>O). As testified by the H<sub>2</sub>O content in mineral phases from the Finero phlogopite peridotite (Tommasi et al., 2017), the modelled Mid-Triassic fertile lithospheric mantle could have been able to preserve a significant enrichment and volatile content (600-800 ppm H<sub>2</sub>O) for more than 50 Ma, i.e. since the Variscan subduction-related metasomatism. During the Mid-Triassic partial melting event, the modelled Finero-like mantle exhausted the subduction-related signature inherited during the Variscan subduction. Around 20 Ma later, the same lithosphere portion was affected by an asthenospheric upwelling event related to the Late Triassic-Early Jurassic opening of the Alpine Tethys (Casetta et al., 2019).</p><p>Casetta, F., Ickert, R.B., Mark, D.F., Bonadiman, C., Giacomoni, P.P., Ntaflos, T., Coltorti, M., 2019. The alkaline lamprophyres of the Dolomitic Area (Southern Alps, Italy): markers of the Late Triassic change from orogenic-like to anorogenic magmatism. Journal of Petrology 60(6), 1263-1298.</p><p>Tommasi, A., Langone, A., Padrón-Navarta, J.A., Zanetti, A., Vauchez, A., 2017. Hydrous melts weaken the mantle, crystallization of pargasite and phlogopite does not: Insights from a petrostructural study of the Finero peridotites, Southern Alps. Earth and Planetary Science Letters 477, 59-72.</p>


2021 ◽  
Author(s):  
Nicolò Nardini ◽  
Federico Casetta ◽  
Pier Paolo Giacomoni ◽  
Massimo Coltorti

<p>Zoned crystals play a fundamental role in modern volcanology as a key to unravel the geometry and the dynamics of plumbing systems. Ancient volcano-plutonic complexes, nowadays exposed at the surface, can sometimes preserve textural-chemical record of such dynamics inside their constituting mineral phases. This is the case of the Cima Pape Middle Triassic complex (Dolomites, Southern Alps), which is composed by a 50 to 300 metres thick gabbroic to monzodioritic sill overlaid by basaltic to trachyandesitic volcanites with high Porphyricity Index (P.I. 43-48 %).</p><p>Volcanites contain a large number of concentric-zoned clinopyroxenes, while intrusive rocks are mostly made up of homogeneous and unzoned crystals. In volcanites, the typical clinopyroxene zoning pattern consists of one or more high-Mg# and high Cr<sub>2</sub>O<sub>3</sub> bands (Mg# 84-91; Cr<sub>2</sub>O<sub>3</sub> up to 1.2 wt%) with variable thickness, formed between cores and rims with relatively lower Mg# and Cr contents (Mg# 70-77; Cr<sub>2</sub>O<sub>3</sub> <0.1 wt%). Chondrite-normalized incompatible element patterns of low-Mg# portions show Nb, Ta, Sr, Zr and Ti negative anomalies and Th-U positive peaks, while high-Mg# bands have a generally more depleted patterns maintaining similar profile. REE patterns in both high-Mg# and low-Mg# domains have a convex-upward shape and La/Yb<sub>N</sub> from 1.3 to 2.1. Thermobarometric calculations reveal that the high-Mg# bands were in equilibrium with a more primitive, hotter and more H<sub>2</sub>O depleted melt (Mg# = 65-70; T = 1130-1150°C; H<sub>2</sub>O = 2.1-2.6 wt%) than cores and rims, which likely formed in a colder, H<sub>2</sub>O-rich evolved melt (Mg# = 43-45; T = 1035-1075°C; H<sub>2</sub>O = 2.6-3.8 wt%). According to our model, a first crystallization stage in a high crystallinity (P.I. almost 50%) “mush-type” system led to the formation of low-Mg# clinopyroxenes (Mg# 70-77) at P of 2-4 kbar. The ascent of one or multiple pulses of primitive, hot, and H<sub>2</sub>O-poor basaltic magmas (Casetta et al., 2020) in the shallower portions of the plumbing system led to the formation of the high-Mg# bands. Later on, re-equilibration of clinopyroxene with the post-mixing melt system resulted in the formation of the low-Mg# rims. Cima Pape products have many textural-chemical similarities with those reported at the active Stromboli volcano, suggesting that they were formed through similar dynamics at comparable T-P conditions (Petrone et al., 2018; Di Stefano et al., 2020). The peculiarity of clinopyroxene texture in Cima Pape rocks allowed us to study the processes occurred in the plumbing system beneath an ancient volcano and offered the opportunity to test the approaches/models currently adopted for active systems.</p><p> </p><p>Casetta, F., et al., 2020. The Variscan subduction inheritance in the Southern Alps Sub-Continental Lithospheric Mantle: Clues from the Middle Triassic shoshonitic magmatism of the Dolomites (NE Italy). Lithos, 105856.</p><p>Di Stefano, F., et al., 2020. Mush cannibalism and disruption recorded by clinopyroxene phenocrysts at Stromboli volcano: New insights from recent 2003–2017 activity. Lithos, 360–361.</p><p>Petrone, C. M., et al., 2018. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano. Earth and Planetary Science Letters, 492, 206–221.</p>


2021 ◽  
Author(s):  
Aleksei Kruk ◽  
Alexander Sokol

<p>We study the reaction of garnet lherzolite with carbonatitic melt rich in molecular CO<sub>2</sub> and/or H<sub>2</sub>O in experiments at 5.5 GPa and 1200-1450°C. The experimental results show that carbonation of olivine with formation of orthopyroxene and magnesite can buffer the CO<sub>2</sub> contents in the melt, which impedes immediate separation of CO<sub>2</sub> fluid from melt equilibrated with the peridotite source. The solubility of molecular CO<sub>2</sub> in melt decreases from 20-25 wt.% at 4.5-6.8 wt.% SiO<sub>2</sub> typical of carbonatite to 7-12 wt.% in more silicic kimberlite-like melts with 26-32 wt.% SiO<sub>2</sub>. Interaction of garnet lherzolite with carbonatitic melt (2:1) in the presence of 2-3 wt.% H<sub>2</sub>O and 9-13 wt.% molecular CO<sub>2</sub> at 1200-1450°С yields low SiO<sub>2</sub> (<10 wt.%) alkali‐carbonatite melts, which shows multiphase saturation with magnesite-bearing garnet harzburgite. Thus, carbonatitic melts rich in volatiles can originate in a harzburgite source at moderate temperatures common to continental lithospheric mantle (CLM).</p><p>Having separated from the source, carbonatitic magma enriched in molecular CO<sub>2</sub> and H<sub>2</sub>O can rapidly acquire a kimberlitic composition with >25 wt.% SiO<sub>2 </sub>by dissolution and carbonation of entrapped peridotite. Furthermore, interaction of garnet lherzolite with carbonatitic melt rich in K, CO<sub>2</sub>, and H<sub>2</sub>O at 1350°С produces immiscible kimberlite-like carbonate-silicate and K-rich silicate melts. Quenched silicate melt develops lamelli of foam-like vesicular glass. Differentiation of immiscible melts early during ascent may equalize the compositions of kimberlite magmas generated in different CLM sources. The fluid phase can release explosively from ascending magma at lower pressures as a result of SiO<sub>2</sub> increase which reduces the solubility of CO<sub>2</sub> due to decarbonation reaction of magnesite and orthopyroxene.</p><p>The research was performed by a grant of the Russian Science Foundation (19-77-10023).</p>


Facies ◽  
1989 ◽  
Vol 21 (1) ◽  
pp. 41-56 ◽  
Author(s):  
Maurizio Gaetani ◽  
Marta Gorza

Sign in / Sign up

Export Citation Format

Share Document