Performance of brown-egg laying pullets fed diets with sunflower meal and enzyme complex

2021 ◽  
pp. 104776
Author(s):  
A.V.O. Alencar ◽  
T.R. Gomes ◽  
G.A.J. Nascimento ◽  
E.R. Freitas ◽  
P.H. Watanabe ◽  
...  
2015 ◽  
Vol 17 (3) ◽  
pp. 363-370 ◽  
Author(s):  
WAG Araújo ◽  
LFT Albino ◽  
HS Rostagno ◽  
GBS Pessoa ◽  
SCS Cruz ◽  
...  

2018 ◽  
Vol 48 (2) ◽  
pp. 390 ◽  
Author(s):  
P Baghban-Kanani ◽  
B Hosseintabar-Ghasemabad ◽  
S Azimi-Youvalari ◽  
A Seidavi ◽  
T Ayaşan ◽  
...  

Author(s):  
Wagner Azis Garcia de Araújo ◽  
Luis Fernando Teixeira Albino ◽  
Horacio Santiago Rostagno ◽  
Melissa Isabel Hannas ◽  
Jorge Armando Prada Luengas ◽  
...  

2019 ◽  
Author(s):  
Mireia Plaza ◽  
Alejandro Cantarero ◽  
Juan Moreno

Female mass in most altricial birds reaches its maximum during breeding at egg-laying, which coincides temporally with the fertile phase when extra-pair paternity (EPP) is determined. Higher mass at laying may have two different effects on EPP intensity. On the one hand, it would lead to increased wing loading (body mass/wing area), which may impair flight efficiency and thereby reduce female’s capacity to resist unwanted extra-pair male approaches (sexual conflict hypothesis). On the other hand, it would enhance female condition, favouring her capacity to evade mate-guarding and to search for extra-pair mates (female choice hypothesis). In both cases, higher female mass at laying may lead to enhanced EPP. To test this prediction, we reduced nest building effort by adding a completely constructed nest in an experimental group of female pied flycatchers (Ficedula hypoleuca). Our treatment caused an increase in mass and thereby wing loading and this was translated into a significantly higher EPP in the manipulated group compared with the control group as expected. There was also a significant negative relationship between EPP and laying date and the extent of the white wing patch, an index of female dominance. More body reserves at laying mean not only a higher potential fecundity but a higher level of EPP as well. This interaction had not previously received due attention but should be considered in future studies of avian breeding strategies.


2019 ◽  
Author(s):  
Gretchen F. Wagner ◽  
Emeline Mourocq ◽  
Michael Griesser

Predation of offspring is the main cause of reproductive failure in many species, and the mere fear of offspring predation shapes reproductive strategies. Yet, natural predation risk is ubiquitously variable and can be unpredictable. Consequently, the perceived prospect of predation early in a reproductive cycle may not reflect the actual risk to ensuing offspring. An increased variance in investment across offspring has been linked to breeding in unpredictable environments in several taxa, but has so far been overlooked as a maternal response to temporal variation in predation risk. Here, we experimentally increased the perceived risk of nest predation prior to egg-laying in seven bird species. Species with prolonged parent-offspring associations increased their intra-brood variation in egg, and subsequently offspring, size. High risk to offspring early in a reproductive cycle can favour a risk-spreading strategy particularly in species with the greatest opportunity to even out offspring quality after fledging.


2019 ◽  
Vol 2 (02) ◽  
pp. 80-89
Author(s):  
Blanca De Unamuno Bustos ◽  
Natalia Chaparr´´o Aguilera ◽  
Inmaculada Azorín García ◽  
Anaid Calle Andrino ◽  
Margarita Llavador Ros ◽  
...  

Actinic keratosis (AKs) are part of the cancerization field, a region adjacent to AKs containing subclinical and histologically abnormal epidermal tissue due to Ultraviolet (UV)-induced DNA damage. The photoproducts as consequence of DNA damage induced by UV are mainly cyclobutane pyrimidine dimers (CPDs). Fernblock® demonstrated in previous studies significant reduction of the number of CPDs induced by UV radiation. Photolyases are a specific group of enzymes that remove the major UV-induced DNA lesions by a mechanism called photo-reactivation. A monocentric, prospective, controlled, and double blind interventional study was performed to evaluate the effect of a new medical device (NMD) containing a DNA-repair enzyme complex (photolyases, endonucleases and glycosilases), a combination of UV-filters, and Fernblock® in the treatment of the cancerization field in 30 AK patients after photodynamic therapy. Patients were randomized into two groups: patients receiving a standard sunscreen (SS) andpatients receiving the NMD. Clinical, dermoscopic, reflectance confocal microscopy (RCM) and histological evaluations were performed. An increase of AKs was noted in all groups after three months of PDT without significant differences between them (p=0.476). A significant increase in the number of AKs was observed in SS group after six (p=0.026) and twelve months of PDT (p=0.038); however, this increase did not reach statistical significance in the NMD group. Regarding RCM evaluation, honeycomb pattern assessment after twelve months of PDT showed significant differences in the extension and grade of the atypia in the NMD group compared to SS group (p=0.030 and p=0.026, respectively). Concerning histopathological evaluation, keratinocyte atypia grade improved from baseline to six months after PDT in all the groups, with no statistically significant differences between the groups. Twelve months after PDT, p53 expression was significantly lower in the NMD group compared to SS group (p=0.028). The product was well-tolerated, with no serious adverse events reported. Our results provide evidence of the utility of this NMD in the improvement of the cancerization field and in the prevention of the development of new AKs.  


Sign in / Sign up

Export Citation Format

Share Document