Depositional environments of the Mediterranean “Lower Evaporites” of the Messinian salinity crisis: Constraints from quantitative analyses

2008 ◽  
Vol 253 (3-4) ◽  
pp. 73-81 ◽  
Author(s):  
W. Krijgsman ◽  
P.Th. Meijer
2020 ◽  
Author(s):  
Konstantina Agiadi ◽  
Niklas Hohmann ◽  
Giorgio Carnevale ◽  
Elsa Gliozzi ◽  
Constanza Faranda ◽  
...  

<p>The Messinian Salinity Crisis (MSC) was the greatest paleoenvironmental perturbation the Mediterranean has ever seen. The literature is abundant in hypotheses on the repercussions of the MSC on organisms. However, all these are based on incomplete and still uncertain scenarios about the MSC evolution, as well as on the assumption that such a paleoenvironmental perturbation must have completely reset marine biota. Having prevailed for many decades now, this assumption has leaked from paleontology and geosciences to biological sciences, with numerous studies taking this scenario for granted instead of using it as a starting hypothesis to be tested. Here, we review and revise the marine fossil record across the Mediterranean from the Tortonian until the Zanclean to follow the current rules of nomenclature, correct misidentifications, and control for stratigraphic misplacements. We examine the composition of marine faunas, both taxonomically and considering the function of each group in the marine ecosystem and the transfer of energy through the marine food web. Specifically, we investigate the following functional groups: 1) primary producers, 2) secondary producers, 3) primary consumers, 4) secondary consumers, and 5) top predators. Our study includes sea grasses, phytoplankton, corals, benthic and planktonic foraminifera, bivalves, gastropods, brachiopods, echinoids, bryozoans, fishes, ostracods, and marine mammals. We calculate biodiversity indexes to provide independent evidence quantifying to what degree the marine fauna underwent:</p><ol><li>A drop of overall regional biodiversity of the Mediterranean due to environmental stress during the Messinian.</li> <li>A taxonomic and functional change between the Tortonian, Messinian, and the Zanclean, that is before and after the MSC, as well as during the precursor events to that actual crisis taking place after the Tortonian/Messinian boundary.</li> <li>The onset of the present-day west-to-east decreasing gradient in species richness, which has been related to the sea temperature and productivity gradients and the distance from the Gibraltar connection to the Atlantic.</li> </ol>


2017 ◽  
Vol 472 ◽  
pp. 25-37 ◽  
Author(s):  
Dirk Simon ◽  
Alice Marzocchi ◽  
Rachel Flecker ◽  
Daniel J. Lunt ◽  
Frits J. Hilgen ◽  
...  

2006 ◽  
Vol 177 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Ludovic Mocochain ◽  
Georges Clauzon ◽  
Jean-Yves Bigot

Abstract The Messinian salinity crisis is typically recorded by evaporites in the abyssal plains of the Mediterranean Sea and by canyons incised into the Mediterranean margins and their hinterlands. However, the impacts of crisis on geomorphology and surface dynamics lasted, until canyons were filled by sediments in the Pliocene (fig. 2). In the mid-Rhône valley, the Ardeche Cretaceous carbonate platform is incised over 600 m by the Rhône Messinian canyon. The canyon thalweg is located – 236 m bsl (below sea level) in the borehole of Pierrelatte [Demarcq, 1960; fig. 1]. During the Pliocene, this canyon was flooded as a ria and infilled by a Gilbert type fan delta [Clauzon and Rubino, 1992; Clauzon et al., 1995]. The whole Messinian-Pliocene third order cycle [Haq et al., 1987] generated four benchmark levels. The first two are [Clauzon, 1996]: (i) The pre-evaporitic abandonment surface which is mapped around the belvedere of Saint-Restitut (fig. 1). This surface is synchronous [Clauzon, 1996] of the crisis onset (5.95 Ma) [Gautier et al., 1994; Krigjsman et al., 1999] and, consequently, is an isochronous benchmark. (ii) The Messinian erosional surface is also an isochronous benchmark due to the fast flooding [Blanc, 2002] of the Rhône canyon, becoming a ria at 5.32 Ma [Hilgen and Langereis, 1988]. These surfaces are the result of endoreic Mediterranean sea level fall more than a thousand meters below the Atlantic Ocean. A huge accommodation space (up to more than 1000 m) was created as sea-level rose up to 80 m above its present-day level (asl) during the Pliocene highstand of cycle TB 3.4 (from 5.32 to 3.8 Ma). During the Lower Pliocene this accommodation space was filled by a Gilbert fan delta. This history yields two other benchmark levels: (i) the marine/non marine Pliocene transition which is an heterochronous surface produced by the Gilbert delta progradation. This surface recorded the Pliocene highstand sea level; (ii) the Pliocene abandonment surface at the top of the Gilbert delta continental wedge. Close to the Rhône-Ardeche confluence, the present day elevations of the four reference levels are (evolution of base-level synthesized in fig. 4): (1) 312 m asl, (2) 236 m bsl, (3) 130 m asl, (4) 190 m asl. The Ardèche carbonate platform underwent karstification both surficial and at depth. The endokarst is characterized by numerous cavities organised in networks. Saint-Marcel Cave is one of those networks providing the most complete record (fig. 5). It opens out on the northern side of the Ardeche canyon at an altitude of 100 m. It is made up by three superposed levels extending over 45 km in length. The lower level (1) is flooded and functionnal. It extends beneath the Ardeche thalweg down to the depth of 10 m bsl reached by divers. The observations collected in the galleries lead us to the conclusion that the karst originated in the vadose area [Brunet, 2000]. The coeval base-level was necessarily below those galleries. The two other levels (middle (2) and upper (3)) are today abandoned and perched. The middle level is about 115 m asl and the upper one is about 185 m asl. They are horizontal and have morphologies specific to the phreatic and temporary phreatic zone of the karst (fig. 6). In literature, the terracing of the Saint-Marcel Cave had been systematically interpreted as the result of the lowering by steps of the Ardeche base-level [Guérin, 1973; Blanc, 1995; Gombert, 1988; Debard, 1997]. In this interpretation, each deepening phase of the base level induces the genesis of the gravitary shaft and the abandonment of the previous horizontal level. The next stillstand of base level leads to the elaboration of a new horizontal level (fig. 7). This explanation is valid for most of Quaternary karsts, that are related to glacioeustatic falls of sea-level. However our study on the Saint-Marcel Cave contests this interpretation because all the shafts show an upward digging dynamism and no hint of vadose sections. The same “per ascensum” hydrodynamism was prevailing during the development of the whole network (figs. 8 and 9). We interpret the development of the Ardeche endokarst as related to the eustatic Messinian-Pliocene cycle TB 3.4/3.5 recorded by the Rhône river. The diving investigations in the flooded part of the Saint-Marcel Cave and also in the vauclusian springs of Bourg-Saint-Andeol reached - 154 m bsl. Those depths are compatible only with the incision of the Messinian Rhône canyon at the same altitude (−236 m bsl). The Saint-Marcel lower level would have develop at that time. The ascending shaping of levels 2 and 3 is thus likely to have formed during the ensuing sea-level rise and highstand during the Pliocene, in mainly two steps: (i) the ria stage controlled by the Mediterranean sea level rise and stillstand; (ii) the rhodanian Gilbert delta progradation, that controlled the genesis of the upper level (fig. 10).


2020 ◽  
Author(s):  
Paul Meijer

<p>While the Mediterranean Sea is, since the Middle Miocene, a nearly completely land-locked basin indeed, it is itself comprised of several smaller semi-enclosed seas. What the Mediterranean Sea as a whole is to the Atlantic Ocean, are the Adriatic Sea or Aegean Sea to the Ionian-Levantine basin, for example. In the discussions regarding the Messinian salinity crisis the marginal basins of the Mediterranean play a prominent role because it is from these parts that the sedimentary record has been uplifted and become exposed.</p><p>In view of this and with an aim to contribute insight from the field of modelling, we focus on the basic element: a single marginal basin, subject to atmospheric forcing and exchanging water through a seaway with an adjacent larger basin. The equations are derived in dimensionless form and a universal, scale-independent, solution for basin salinity obtained. The analysis yields two dimensionless ratios which control basin behaviour in terms of salinity and response time. </p><p>Application of the theoretical model to the Messinian salinity crisis sheds new light on the formation of gypsum in marginal basins that were separated from the main Mediterranean by a sill, gives insight about the role of atmospheric heat exchange, and underlines the previous finding that, at elevated salinity, marginal basins respond to periodic climate variation (e.g. due to precession) with a significant lag.</p>


2020 ◽  
Author(s):  
Federico Andreetto ◽  
Rachel Flecker ◽  
Marius Stoica

<p>The discovery in the 70’s of the km-thick Mediterranean salt giant alongside the seismic observance of Pliocene-filled engravings along its shelf-slope systems concurred together to postulate that the Mediterranean-Atlantic seaway terminated during the late Messinian. The resulting changes in paleogeographic, paleohydrological and biological conditions, acknowledged as Messinian Salinity Crisis (MSC, 5.97-5.33 Ma), find their expression in the marginal sedimentary record in fauna-depleted gypsum and halite-bearing successions (5.97-5.42 Ma). During the Lago-Mare phase (5.42-5.33) that terminates the MSC the evaporitic deposition endures in the intermediate basins (e.g. Caltanissetta Basin, Sicily), whilst all the marginal basins fill with fluvio-lacustrine terrigenous sediments. Up to five conglomerate to sandstone-laminated pelite alternations thought to be precession controlled are counted underneath the Zanclean marine deposits featuring the restoration of a marine environment. Finer hemicycles tuned to insolation maxima period stand out above all for the occurrence of faunal assemblages consisting of brackish water ostracods, mollusks and dinoflagellate cysts. The affinity of these faunal elements with the coeval inhabitants of the Eastern Paratethys region, fragmented in isolated, long-lived brackish lakes (i.e. Euxinic and Caspian Basin), led to the primordial hypothesis of a similar paleoenvironment in force during the Lago-Mare phase for the Mediterranean, coherent with the paleoenvironment subsisting immediately prior to it. However, the progress of scientific research provided additional evidence arguing against the desiccation theory and supporting a basin filled even during the Lago-Mare phase. Within the full Mediterranean model controversial views exist on the hydrochemistry of the water mass, disputed between marine, brackish and density-stratified. To elucidate Mediterranean base level and hydrology just preceding the restoration of open marine conditions we merge together new and published ostracod biostratigraphic data and radiogenic strontium isotope ratios (<sup>87</sup>Sr/<sup>86</sup>Sr) from locations (SE Spain, Piedmont, Sicily and Cyprus) covering the whole extent of the Mediterranean Basin. Ostracod faunal assemblages share approximately the same species and the same distribution pattern. Within a single pelitic bed, richness varies from oligotypic assemblages dominated by <em>Cyprideis torosa</em> to heterotypic assemblages with up to 17 Black Sea-derived species. Consequently, we conclude that it is most likely that the Mediterranean water level during the final phase of the MSC was high enough to let the Paratethyan fauna to reach and spread throughout the shallow Mediterranean depositional environments. <sup>87</sup>Sr/<sup>86</sup>Sr ratios measured on ostracod valves range between 0.709131-0.708715. The generally lower and higher Sr isotopic composition than contemporary seawater (∼0.709024) alongside the data spreading are considered as a further proof of the presence of multiple lakes acquiring their own isotopic composition. We demonstrate that, when taken individually, none of the marginal basins yields an isotopic signature that matches that of the local rivers. If anything, these <sup>87</sup>Sr/<sup>86</sup>Sr values arise from the mixing of local river water with Mediterranean water and we show that the discrepancies among each basin are consistent with variations in the lithologies of the contributing catchments. Lastly, we show that multiple, isotopically different water sources of both internal (major peri-Mediterranean rivers) and external (Atlantic and Eastern Paratethys) contributed to building up the Mediterranean water mass.</p><p> </p>


2015 ◽  
Vol 11 (2) ◽  
pp. 233-251 ◽  
Author(s):  
R. P. M. Topper ◽  
P. Th. Meijer

Abstract. A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations of the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation). A series of experiments with different sill depths in the Atlantic–Mediterranean connection is used to assess the sensitivity of Mediterranean circulation and water characteristics to sill depth. Basin-averaged water salinity and, to a lesser degree, temperature rise when the sill depth is shallower and exchange with the Atlantic is lower. Lateral and interbasinal differences in the Mediterranean are, however, largely unchanged. The strength of the upper overturning cell in the western basin is proportional to the magnitude of the exchange with the Atlantic, and hence to sill depth. Overturning in the eastern basin and deep water formation in both basins, on the contrary, are little affected by the sill depth. The model results are used to interpret the sedimentary record of the Late Miocene preceding and during the Messinian Salinity Crisis. In the western basin, a correlation exists between sill depth and rate of refreshment of deep water. On the other hand, because sill depth has little effect on the overturning and deep water formation in the eastern basin, the model results do not support the notion that restriction of the Atlantic–Mediterranean connection may cause lower oxygenation of deep water in the eastern basin. However, this discrepancy may be due to simplifications in the surface forcing and the use of a bathymetry different from that in the Late Miocene. We also tentatively conclude that blocked outflow, as found in experiments with a sill depth ≤10 m, is a plausible scenario for the second stage of the Messinian Salinity Crisis during which halite was rapidly accumulated in the Mediterranean. With the model setup and experiments, a basis has been established for future work on the sensitivity of Mediterranean circulation to changes in (palaeo-)bathymetry and external forcings.


Sign in / Sign up

Export Citation Format

Share Document