Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data; Luconia province, offshore Sarawak, Malaysia

2004 ◽  
Vol 21 (5) ◽  
pp. 517-534 ◽  
Author(s):  
Valentina Zampetti ◽  
Wolfgang Schlager ◽  
Jan-Henk van Konijnenburg ◽  
Arnout-Jan Everts
2021 ◽  
pp. 2250-2261
Author(s):  
Ahmed Muslim Khawaja ◽  
Jassim Muhammad Thabit

     This research is an attempt to solve the ambiguity associated with the stratigraphic setting of the main reservoir (late Cretaceous) of Mishrif Formation in Dujaila oil field. This was achieved by studying a 3D seismic reflection post-stack data for an area of ​​602.62 Km2 in Maysan Governorate, southeast of Iraq. Seismic analysis of the true amplitude reflections, time maps, and 3D depositional models showed a sufficient seismic evidence that the Mishrif Formation produces oil from a stratigraphic trap of isolated reef carbonate buildups that were grown on the shelf edge of the carbonate platform, located in the area around the productive well Dujaila-1. The low-frequency attribute illustrated that it is restricted in the area around the productive well Dujaila-1, which confirmed the existence of reef porous carbonate buildups and hydrocarbon accumulation in this region. The pay zone of the reef mound trap extends for about 7 km from the well Dujaila-1 toward the southwest side and 4 km toward the well Dujaila-2, without reaching it, which is explaining why it was dry. Therefore, this area to the south of the productive well Dujaila-1 represents a good area for low-risk drilling. Consequently, the hydrocarbon system observed in the Dujaila oil field provides a new opportunity to explore and produce oil in Mishrif Formation in other areas on the flank of the productive structures and in flat areas situated on the belt of the carbonate platform edge.


2018 ◽  
Vol 6 (3) ◽  
pp. B15-B35
Author(s):  
Daniel R. Ebuna ◽  
Jared W. Kluesner ◽  
Kevin J. Cunningham ◽  
Joel H. Edwards

The current lack of a robust standardized technique for geophysical mapping of karst systems can be attributed to the complexity of the environment and prior technological limitations. Abrupt lateral variations in physical properties that are inherent to karst systems generate significant geophysical noise, challenging conventional seismic signal processing and interpretation. The application of neural networks (NNs) to multiattribute seismic interpretation can provide a semiautomated method for identifying and leveraging the nonlinear relationships exhibited among seismic attributes. The ambiguity generally associated with designing NNs for seismic object detection can be reduced via statistical analysis of the extracted attribute data. A data-driven approach to selecting the appropriate set of input seismic attributes, as well as the locations and suggested number of training examples, provides a more objective and computationally efficient method for identifying karst systems using reflection seismology. This statistically optimized NN technique is demonstrated using 3D seismic reflection data collected from the southeastern portion of the Florida carbonate platform. Several dimensionality reduction methods are applied, and the resulting karst probability models are evaluated relative to one another based on quantitative and qualitative criteria. Comparing the preferred model, using quadratic discriminant analysis, with previously available seismic object detection workflows demonstrates the karst-specific nature of the tool. Results suggest that the karst multiattribute workflow presented is capable of approximating the structural boundaries of karst systems with more accuracy and efficiency than a human counterpart or previously presented seismic interpretation schemes. This objective technique, using solely 3D seismic reflection data, is proposed as a practical approach to mapping karst systems for subsequent hydrogeologic modeling.


2014 ◽  
Vol 2 (1) ◽  
pp. SA151-SA162 ◽  
Author(s):  
John H. McBride ◽  
R. William Keach ◽  
Eugene E. Wolfe ◽  
Hannes E. Leetaru ◽  
Clayton K. Chandler ◽  
...  

Because the confinement of [Formula: see text] in a storage reservoir depends on a stratigraphically continuous set of seals to isolate the fluid in the reservoir, the detection of structural anomalies is critical for guiding any assessment of a potential subsurface carbon storage site. Employing a suite of 3D seismic attribute analyses (as opposed to relying upon a single attribute) maximizes the chances of identifying geologic anomalies or discontinuities (e.g., faults) that may affect the integrity of a seal that will confine the stored [Formula: see text] in the reservoir. The Illinois Basin, a major area for potential carbon storage, presents challenges for target assessment because geologic anomalies can be ambiguous and easily misinterpreted when using 2D seismic reflection data, or even 3D data, if only conventional display techniques are used. We procured a small 3D seismic reflection data set in the central part of the basin (Stewardson oil field) to experiment with different strategies for enhancing the appearance of discontinuities by integrating 3D seismic attribute analyses with conventional visualizations. Focusing on zones above and below the target interval of the Cambrian Mt. Simon Sandstone, we computed attribute traveltime slices (combined with vertical views) based on discontinuity computations, crossline-directed amplitude change, azimuth of the dip, shaded relief, and fault likelihood attributes. The results provided instructive examples of how discontinuities (e.g., subseismic scale faults) may be almost “invisible” on conventional displays but become detectable and mappable using an appropriate integration of 3D attributes. Strong discontinuities in underlying Precambrian basement rocks do not necessarily propagate upward into the target carbon storage interval. The origin of these discontinuities is uncertain, but we explored a possible strike-slip role that also explains the localization of a structural embayment developed in Lower Paleozoic strata above the basement discontinuities.


Sign in / Sign up

Export Citation Format

Share Document