Volcanic features of the North Rockall Trough: application of visualisation techniques on 3D seismic reflection data

2004 ◽  
Vol 67 (2) ◽  
pp. 116-128 ◽  
Author(s):  
Ken Thomson
2014 ◽  
Vol 2 (1) ◽  
pp. SA151-SA162 ◽  
Author(s):  
John H. McBride ◽  
R. William Keach ◽  
Eugene E. Wolfe ◽  
Hannes E. Leetaru ◽  
Clayton K. Chandler ◽  
...  

Because the confinement of [Formula: see text] in a storage reservoir depends on a stratigraphically continuous set of seals to isolate the fluid in the reservoir, the detection of structural anomalies is critical for guiding any assessment of a potential subsurface carbon storage site. Employing a suite of 3D seismic attribute analyses (as opposed to relying upon a single attribute) maximizes the chances of identifying geologic anomalies or discontinuities (e.g., faults) that may affect the integrity of a seal that will confine the stored [Formula: see text] in the reservoir. The Illinois Basin, a major area for potential carbon storage, presents challenges for target assessment because geologic anomalies can be ambiguous and easily misinterpreted when using 2D seismic reflection data, or even 3D data, if only conventional display techniques are used. We procured a small 3D seismic reflection data set in the central part of the basin (Stewardson oil field) to experiment with different strategies for enhancing the appearance of discontinuities by integrating 3D seismic attribute analyses with conventional visualizations. Focusing on zones above and below the target interval of the Cambrian Mt. Simon Sandstone, we computed attribute traveltime slices (combined with vertical views) based on discontinuity computations, crossline-directed amplitude change, azimuth of the dip, shaded relief, and fault likelihood attributes. The results provided instructive examples of how discontinuities (e.g., subseismic scale faults) may be almost “invisible” on conventional displays but become detectable and mappable using an appropriate integration of 3D attributes. Strong discontinuities in underlying Precambrian basement rocks do not necessarily propagate upward into the target carbon storage interval. The origin of these discontinuities is uncertain, but we explored a possible strike-slip role that also explains the localization of a structural embayment developed in Lower Paleozoic strata above the basement discontinuities.


Geophysics ◽  
2007 ◽  
Vol 72 (6) ◽  
pp. B149-B160 ◽  
Author(s):  
Cedric Schmelzbach ◽  
Heinrich Horstmeyer ◽  
Christopher Juhlin

A limited 3D seismic-reflection data set was used to map fracture zones in crystalline rock for a nuclear waste disposal site study. Seismic-reflection data simultaneously recorded along two roughly perpendicular profiles (1850 and [Formula: see text] long) and with a [Formula: see text] receiver array centered at the intersection of the lines sampled a [Formula: see text] area in three dimensions. High levels of source-generated noise required a processing sequence involving surface-consistent deconvolution, which effectively increased the strength of reflected signals, and a linear [Formula: see text] filtering scheme to suppress any remaining direct [Formula: see text]-wave energy. A flexible-binning scheme significantly balanced and increased the CMP fold, but the offset and azimuth distributions remain irregular; a wide azimuth range and offsets [Formula: see text] are concentrated in the center of the survey area although long offsets [Formula: see text] are only found at the edges of the site. Three-dimensional dip moveout and 3D poststack migration were necessary to image events with conflicting dips up to about 40°. Despite the irregular acquisition geometry and the high level of source-generated noise, we obtained images rich in structural detail. Seven continuous to semicontinuous reflection events were traced through the final data volume to a maximum depth of around [Formula: see text]. Previous 2D seismic-reflection studies and borehole data indicate that fracture zones are the most likely cause of the reflections.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. WC163-WC171 ◽  
Author(s):  
Musa S. D. Manzi ◽  
Mark A. S. Gibson ◽  
Kim A. A. Hein ◽  
Nick King ◽  
Raymond J. Durrheim

As expensive as 3D seismic reflection surveys are, their high cost is justified by improved imaging of certain ore horizons in some of the Witwatersrand basin gold mines. The merged historical 3D seismic reflection data acquired for Kloof and South Deep mines forms an integral part of their Ventersdorp Contact Reef mine planning and development programme. The recent advances in 3D seismic technology have motivated the reprocessing and reinterpretation of the old data sets using the latest algorithms, therefore significantly increasing the signal-to-noise ratio of the data. In particular, the prestack time migration technique has provided better stratigraphic and structural imaging in complex faulted areas, such as the Witwatersrand basin, relative to older poststack migration methods. Interpretation tools such as seismic attributes have been used to identify a number of subtle geologic structures that have direct impact on ore resource evaluation. Other improvements include more accurate mapping of the depths, dip, and strike of the key seismic horizons and auriferous reefs, yielding a better understanding of the interrelationship between fault activity and reef distribution, and the relative chronology of tectonic events. The 3D seismic data, when integrated with underground mapping and borehole data, provide better imaging and modeling of critical major fault systems and zones of reef loss. Many faults resolve as multifault segments that bound unmined blocks leading to the discovery and delineation of resources in faulted areas of the mines.


2021 ◽  
pp. 2250-2261
Author(s):  
Ahmed Muslim Khawaja ◽  
Jassim Muhammad Thabit

     This research is an attempt to solve the ambiguity associated with the stratigraphic setting of the main reservoir (late Cretaceous) of Mishrif Formation in Dujaila oil field. This was achieved by studying a 3D seismic reflection post-stack data for an area of ​​602.62 Km2 in Maysan Governorate, southeast of Iraq. Seismic analysis of the true amplitude reflections, time maps, and 3D depositional models showed a sufficient seismic evidence that the Mishrif Formation produces oil from a stratigraphic trap of isolated reef carbonate buildups that were grown on the shelf edge of the carbonate platform, located in the area around the productive well Dujaila-1. The low-frequency attribute illustrated that it is restricted in the area around the productive well Dujaila-1, which confirmed the existence of reef porous carbonate buildups and hydrocarbon accumulation in this region. The pay zone of the reef mound trap extends for about 7 km from the well Dujaila-1 toward the southwest side and 4 km toward the well Dujaila-2, without reaching it, which is explaining why it was dry. Therefore, this area to the south of the productive well Dujaila-1 represents a good area for low-risk drilling. Consequently, the hydrocarbon system observed in the Dujaila oil field provides a new opportunity to explore and produce oil in Mishrif Formation in other areas on the flank of the productive structures and in flat areas situated on the belt of the carbonate platform edge.


2015 ◽  
Vol 55 (2) ◽  
pp. 400 ◽  
Author(s):  
Catherine Belgarde ◽  
Gianreto Manatschal ◽  
Nick Kusznir ◽  
Sonia Scarselli ◽  
Michal Ruder

Acquisition of long-offset (8–10 km), long-record length (12–18 sec), 2D reflection seismic and ship-borne potential fields data (WestraliaSpan by Ion/GXT and New Dawn by PGS) on the North West Shelf of Australia provide the opportunity to study rift processes in the context of modern models for rifted margins (Manatschal, 2004). Basement and Moho surfaces were interpreted on seismic reflection data. Refraction models from Geoscience Australia constrain Moho depth and initial densities for gravity modelling through standard velocity-density transformation. 2D joint inversion of seismic reflection and gravity data for Moho depth and basement density constrain depth to basement on seismic. 2D gravity and magnetic intensity forward modelling of key seismic lines constrain basement thickness, type and density. Late Permian and Jurassic-Early Cretaceous rift zones were mapped on seismic reflection data and constrained further by inversion and forward modelling of potential fields data. The Westralian Superbasin formed as a marginal basin in Eastern Gondwana during the Late Permian rifting of the Sibumasu terrane. Crustal necking was localised along mechanically-weak Proterozoic suture belts or Early Paleozoic sedimentary basins (such as Paterson and Canning). Mechanically-strong cratons (such as Pilbara and Kimberley) remained intact, resulting in necking and hyper-extension at their edges. Late Permian hyper-extended areas (such as Exmouth Plateau) behaved as mechanically-strong blocks during the Jurassic to Early Cretaceous continental break-up. Late Permian necking zones were reactivated as failed-rift basins and localised the deposition of the Jurassic oil-prone source rocks that have generated much of the oil discovered on the North West Shelf.


1989 ◽  
Vol 29 (1) ◽  
pp. 328 ◽  
Author(s):  
P.E. Williamson ◽  
N.F. Exon ◽  
B. ul Haq ◽  
U. von Rad

Site 764 of the Ocean Drilling Program (ODP), drilled during Leg 122 in the Exmouth Plateau region, cored 200 m of Upper Triassic (Rhaetian) reef complex. This site, on the northern Wombat Plateau (northernmost Exmouth Plateau) represents the first discovery of Triassic reefal material near the Australian North West Shelf. Seismic reflection data through Site 764 show that the reef itself corresponds predominantly to a seismically poorly reflective zone. A number of regional unconformities appear to correspond, however, to traceable seismic horizons which pass with reduced amplitude through the reef, indicating stages of reef growth separated by erosion or non- deposition. Seismic facies around the edges of the reef are consistent with the deposition of wedges of prograding reef- derived detritus.Application of the seismic criteria for reef recognition established at ODP Site 764, to other seismic reflection data on the Wombat Plateau, demonstrates that a major Upper Triassic reef complex fringes the margins of the Wombat Plateau. The Wombat Plateau lies at the western end of the North West Shelf, which was part of the southern margin of a warm Tethys Ocean in the Late Triassic, at a palaeolatitude of 25- 30°S. Upper Triassic reefs are known from southeast Indonesia and Papua New Guinea, and now the Wombat Plateau, and may be common elsewhere along the outer margin of the North West Shelf. Upper Triassic reef complexes, with their associated reservoir, source and seal facies, could represent an exciting new petroleum exploration play for the entire North West Shelf. Facies analysis suggests that they are likely only on the outer shelf and slope. Shallow Triassic reef complexes are clearly identifiable using high resolution seismic reflection data. Seismic reflection data of lower resolution may well reveal the associated detrital carbonate wedges, which are more laterally extensive than the reefal core, deeper in the section.


Sign in / Sign up

Export Citation Format

Share Document