Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments

2014 ◽  
Vol 51 ◽  
pp. 52-62 ◽  
Author(s):  
Masayuki Hyodo ◽  
Yanghui Li ◽  
Jun Yoneda ◽  
Yukio Nakata ◽  
Norimasa Yoshimoto ◽  
...  
2013 ◽  
Vol 275-277 ◽  
pp. 326-331 ◽  
Author(s):  
Zhong Ming Sun ◽  
Jian Zhang ◽  
Chang Ling Liu ◽  
Shi Jun Zhao ◽  
Yu Guang Ye

TDR was introduced to solve the problem of how to measure hydrate saturation accurately. Then a series of un-drained triaxial tests were carried out on methane hydrate-bearing sediments under various conditions with effective confining pressures at 1, 2 and 4 MPa, average hydrate saturations at 15.71, 35.7 and 56.49% and strain rate at 0.8%/min. The results indicate that the shear strength increases with the increases of effective confining pressure and hydrate saturation, but the maximum failure time decreases with the increasing effective confining pressures. According to Mohr-Coulomb failure criterion, the shear strength of methane hydrate-bearing sediments was analyzed. It can be found that the internal friction angles are not sensitive to hydrate saturation, but the cohesion shows a high hydrate saturation dependency.


2021 ◽  
Vol 239 ◽  
pp. 112282
Author(s):  
Ke-Jing Zhou ◽  
Wei-Jian Yi ◽  
Hui Chen ◽  
Yun Zhou ◽  
Wang-Xi Zhang

Author(s):  
Ah-Ram Kim ◽  
Gye-Chun Cho ◽  
Joo-Yong Lee ◽  
Se-Joon Kim

Methane hydrate has been received large attention as a new energy source instead of oil and fossil fuel. However, there is high potential for geomechanical stability problems such as marine landslides, seafloor subsidence, and large volume contraction in the hydrate-bearing sediment during gas production induced by depressurization. In this study, a thermal-hydraulic-mechanical coupled numerical analysis is conducted to simulate methane gas production from the hydrate deposits in the Ulleung basin, East Sea, Korea. The field-scale axisymmetric model incorporates the physical processes of hydrate dissociation, pore fluid flow, thermal changes (i.e., latent heat, conduction and advection), and geomechanical behaviors of the hydrate-bearing sediment. During depressurization, deformation of sediments around the production well is generated by the effective stress transformed from the pore pressure difference in the depressurized region. This tendency becomes more pronounced due to the stiffness decrease of hydrate-bearing sediments which is caused by hydrate dissociation.


2021 ◽  
Author(s):  
Zhen Li ◽  
Thomas Kempka ◽  
Erik Spangenberg ◽  
Judith Schicks

<p>Natural gas hydrates are considered as one of the most promising alternatives to conventional fossil energy sources, and are thus subject to world-wide research activities for decades. Hydrate formation from methane dissolved in brine is a geogenic process, resulting in the accumulation of gas hydrates in sedimentary formations below the seabed or overlain by permafrost. The LArge scale Reservoir Simulator (LARS) has been developed (Schicks et al., 2011, 2013; Spangenberg et al., 2015) to investigate the formation and dissociation of gas hydrates under simulated in-situ conditions of hydrate deposits. Experimental measurements of the temperatures and bulk saturation of methane hydrates by electrical resistivity tomography have been used to determine the key parameters, describing and characterising methane hydrate formation dynamics in LARS. In the present study, a framework of equations of state to simulate equilibrium methane hydrate formation in LARS has been developed and coupled with the TRANsport Simulation Environment (Kempka, 2020) to study the dynamics of methane hydrate formation and quantify changes in the porous medium properties in LARS. We present our model implementation, its validation against TOUGH-HYDRATE (Gamwo & Liu, 2010) and the findings of the model comparison against the hydrate formation experiments undertaken by Priegnitz et al. (2015). The latter demonstrates that our numerical model implementation is capable of reproducing the main processes of hydrate formation in LARS, and thus may be applied for experiment design as well as to investigate the process of hydrate formation at specific geological settings.</p><p>Key words: dissolved methane; hydrate formation; hydration; python; permeability.</p><p>References</p><p>Schicks, J. M., Spangenberg, E., Giese, R., Steinhauer, B., Klump, J., & Luzi, M. (2011). New approaches for the production of hydrocarbons from hydrate bearing sediments. Energies, 4(1), 151-172, https://doi.org/10.3390/en4010151</p><p>Schicks, J. M., Spangenberg, E., Giese, R., Luzi-Helbing, M., Priegnitz, M., & Beeskow-Strauch, B. (2013). A counter-current heat-exchange reactor for the thermal stimulation of hydrate-bearing sediments. Energies, 6(6), 3002-3016, https://doi.org/10.3390/en6063002</p><p>Spangenberg, E., Priegnitz, M., Heeschen, K., & Schicks, J. M. (2015). Are laboratory-formed hydrate-bearing systems analogous to those in nature?. Journal of Chemical & Engineering Data, 60(2), 258-268, https://doi.org/10.1021/je5005609</p><p>Kempka, T. (2020) Verification of a Python-based TRANsport Simulation Environment for density-driven fluid flow and coupled transport of heat and chemical species. Adv. Geosci., 54, 67–77, https://doi.org/10.5194/adgeo-54-67-2020</p><p>Gamwo, I. K., & Liu, Y. (2010). Mathematical modeling and numerical simulation of methane production in a hydrate reservoir. Industrial & Engineering Chemistry Research, 49(11), 5231-5245, https://doi.org/10.1021/ie901452v</p><p>Priegnitz, M., Thaler, J., Spangenberg, E., Schicks, J. M., Schrötter, J., & Abendroth, S. (2015). Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data. Geophysical Journal International, 202(3), 1599-1612, https://doi.org/10.1093/gji/ggv245</p>


2019 ◽  
Vol 41 (2) ◽  
pp. 74-80
Author(s):  
Alaa H. J. Al-Rkaby

Abstract Waste material such as used tires is increasing every year, which poses environmental problems. However, such material has been used in several geotechnical applications as alternative lightweight backfill in highway embankments and/or behind retaining walls, providing environmental, economic and technical benefits. These applications require knowledge of engineering properties of soil-tire rubber mixtures. The present study aims to show the possibility of tire rubber usage in sand by evaluating the shear strength and deformability of sand mixed with granulated rubber, in weight percentages between 0 and 50%. The tire rubber content was found to influence the stress-strain and deformation behavior of the mixtures. The shear strength of sand mixed with 10% or 20% tire rubber was higher than that measured for sand only. However, the trend for TRC = 30–50% was different. Samples with a rubber content of 30-50% exhibited a rapid decrease in the stress ratio compared with that of sand. The major principal strain at maximum stress ratio was found to increase with increasing tire rubber content. However, it was observed that the lateral strains (minor and intermediate principal strains) of samples reduced significantly with the addition of tire rubber to the sand.


Sign in / Sign up

Export Citation Format

Share Document