coulomb failure criterion
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 22)

H-INDEX

14
(FIVE YEARS 3)

Volcanica ◽  
2021 ◽  
pp. 279-293
Author(s):  
Marlène Villeneuve ◽  
Michael Heap

Rock failure criteria are key input parameters for models designed to better understand the stability of volcanic rock masses. Cohesion and friction angle are the two defining material variables for the Mohr-Coulomb failure criterion. Although these can be determined from laboratory deformation experiments, they are rarely reported. Tabulated data for volcanic rocks, calculated using published triaxial results, show that cohesion and friction angle decrease with increasing porosity. If porosity is known, these empirical fits can provide laboratory-scale cohesion and friction angle estimations. We present a method to upscale these parameters using the generalised Hoek-Brown failure criterion, discuss the considerations and assumptions associated with the upscaling, and provide recommendations for potential end-users. A spreadsheet is provided so that modellers can (1) estimate cohesion and friction angle and (2) upscale these values for use in large-scale volcano modelling. Better constrained input parameters will increase the accuracy of large-scale volcano stability models.


2021 ◽  
Author(s):  
Lucas Pelascini ◽  
Philippe Steer ◽  
Maxime Mouyen ◽  
Laurent Longuevergne

Abstract. Landslides are often triggered by catastrophic events, among which earthquakes and rainfall are the most depicted. However, very few studies have focused on the effect of atmospheric pressure on slope stability, even though weather events such as typhoons are associated with significant atmospheric pressure changes. Indeed, both atmospheric pressure changes and rainfall-induced groundwater level change can generate pore pressure changes with similar amplitude. In this paper, we assess the respective impacts of atmospheric effects and rainfall over the stability of a hillslope. An analytical model of transient groundwater dynamics is developed to compute slope stability for finite hillslopes. Slope stability is evaluated through a safety factor based on the Mohr-Coulomb failure criterion. Both rainfall infiltration and atmospheric pressure variations, which impact slope stability by modifying the pore pressure of the media, are described by diffusion equations. The models have then been forced by weather data from different typhoons that were recorded over Taiwan. While rainfall infiltration can induce pore pressure change up to hundred kPa, its effects is delayed in time due to diffusion. To the contrary, atmospheric pressure change induces pore pressure changes not exceeding a few kPa, but its effect is instantaneous. Moreover, the effect of rainfall infiltration on slope stability decreases towards the toe of the hillslope and is cancelled where the water table reaches the surface, leaving atmospheric pressure change as the main driver of slope instability. This study allows for a better insight of slope stability through pore pressure analysis, and shows that atmospheric effects shouldn’t always be neglected.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2780
Author(s):  
Zhenkai Wu ◽  
Xizhe Li ◽  
Hanmin Xiao ◽  
Xuewei Liu ◽  
Wei Lin ◽  
...  

It is necessary to carry out experiments on cores with different degrees of crack development when studying the seepage law of cracked reservoirs and evaluating cracks. The seepage experiment in the laboratory requires cores with different degrees of microcrack development; cores obtained via conventional drilling cannot meet the requirements, and the efficacies and evaluation methods of geological parameters used for artificial cracks are not perfect. In this study, cores are loaded using a triaxial gripper, and cracks are produced by changing the difference of stress; the relationship between the increased rate of permeability and the change in stress concentration is used to evaluate the degree of development of the crack in real time. The angle between the cracks and the maximum principal stress direction, calculated using the Mohr–Coulomb failure criterion, is 20–27.5°, which provides theoretical support for the process of crack creation. The experimental results show that the permeability variation curve shows two obvious turning points, which divide the whole zone into a reduction zone, a slow increase zone, and a rapid increase zone. Through the obtained experimental and evaluation results, a complete system for crack creation and evaluation is established, which can provide strong support for the study of cracked reservoirs.


2021 ◽  
Author(s):  
Rob Westaway

During 2018–2019, oil was intermittently produced from the Late Jurassic Upper Portland Sandstone in the Weald Basin, southeast England, via the Horse Hill-1 and Brockham-X2Y wells. Concurrently, a sequence of earthquakes of magnitude ≤3.25 occurred near Newdigate, ∼3 km and ∼8 km from these wells. The pattern, with earthquakes concentrated during production from this Portland reservoir, suggests a cause-and-effect connection. It is proposed that this seismicity occurred on a patch of fault transecting permeable Dinantian limestone, beneath the Jurassic succession of the Weald Basin, hydraulically connected to this reservoir via this permeable fault and the permeable calcite ‘beef’ fabric within the Portland sandstone; oil production depressurizes this reservoir and draws groundwater from the limestone, compacting it and ‘unclamping’ the fault, reaching the Mohr-Coulomb failure criterion and causing seismicity. In principle this model is fully testable, but required data, notably the history of pressure variations in the wells, are not currently in the public domain. Quantitative estimates are, nonetheless, made of the magnitudes of the variations, arising from production from each well, in the state of stress on the seismogenic Newdigate fault. The general principles of this model, including the incorporation of poroelastic effects and effects of fault asperities into Mohr-Coulomb failure calculations, may inform understanding of anthropogenic seismicity in other settings.


2021 ◽  
Author(s):  
Jean Schmittbuhl ◽  
Olivier Lengline ◽  
Sophie Lambotte ◽  
Marc Grunberg ◽  
Cécile Doubre ◽  
...  

<p>Since Nov 2019, a series of seismic of events were felt by the population of the city of Strasbourg, France. The first main event (Ml3.0) on Nov 12, 2019 was part of a seismic swarm that has been initiated a few days before, lasted four month and was located by the BCSF-RéNaSS (EOST) in the northwestern part of the town (Robertsau area) at a depth of 5 km. Its location in the vicinity of the deep geothermal wells (GEOVEN), the temporal correlation with the injection activity on site, the similarity of the depth between the bottom of the wells and the hypocenter of the event, the lack of local seismicity before the event occurrence, the known geological structures including crustal faults in the area, all strongly support the possible triggering of the events by the deep geothermal activities despite the relatively large distance (4-5km). Template matching has been applied and allowed for a significant improvement of the detections. Double-difference relocations evidenced a complex fault zone in the swarm area that extends over 800m. Focal mechanisms of the two main events are consistent with the known orientation of the fault zone. The regional stress field in combination with the fault orientation and a Coulomb failure criterion, shows that the swarm location is in an unstable domain if the cohesion of the fault is weak, particularly sensitive to stress perturbations. Since Oct 2020, hydraulic tests were initiated and a second cluster of seismic events with more felt earthquakes developed closer to the geothermal wells. It includes the largest event (Ml3.6) that was induced on Dec 4, 2020 and caused the definitive arrest of the project. A preliminary analysis shows that most of the largest events happened along the same fault zone as in Nov 2019 but very close to the injection well, where a significant over-pressure has been maintained over time.</p><p><em>This presentation is dedicated to the memory of Prof. François Cornet.</em></p>


2021 ◽  
Vol 269 ◽  
pp. 121801
Author(s):  
Fan Yu ◽  
Daquan Sun ◽  
Guoqiang Sun ◽  
Senlin Ling ◽  
Mingjun Hu ◽  
...  

2020 ◽  
Vol 12 (23) ◽  
pp. 9800
Author(s):  
Sikandar Khan ◽  
Yehia Khulief ◽  
Abdullatif Al-Shuhail ◽  
Salem Bashmal ◽  
Naveed Iqbal

The release of large quantities of CO2 into the atmosphere is one of the major causes of global warming. The most viable method to control the level of CO2 in the atmosphere is to capture and permanently sequestrate the excess amount of CO2 in subsurface geological reservoirs. The injection of CO2 gives rise to pore pressure buildup. It is crucial to monitor the rising pore pressure in order to prevent the potential failure of the reservoir and the subsequent leakage of the stored CO2 into the overburden layers, and then back to the atmosphere. In this paper, the Minjur sandstone reservoir in eastern Saudi Arabia was considered for establishing a coupled geomechanical model and performing the corresponding stability analysis. During the geomechanical modeling process, the fault passing through the Minjur and Marrat layers was also considered. The injection-induced pore-pressure and ground uplift profiles were calculated for the case of absence of a fault across the reservoir, as well as the case with a fault. The stability analysis was performed using the Mohr–Coulomb failure criterion. In the current study, the excessive increase in pore pressure, in the absence of geological faults, moved the reservoir closer to the failure envelope, but in the presence of geological faults, the reservoir reached to the failure envelope and the faults were activated. The developed geomechanical model provided estimates for the safe injection parameters of CO2 based on the magnitudes of the reservoir pore pressure and stresses in the reservoir.


Sign in / Sign up

Export Citation Format

Share Document