scholarly journals Evaluating seafood eco-labeling as a mechanism to reduce collateral impacts of fisheries in an ecosystem-based fisheries management context

Marine Policy ◽  
2016 ◽  
Vol 64 ◽  
pp. 102-115 ◽  
Author(s):  
Rebecca L. Selden ◽  
Sarah R. Valencia ◽  
Ashley E. Larsen ◽  
Jorge Cornejo-Donoso ◽  
Amanda A. Wasserman
2002 ◽  
Vol 59 (9) ◽  
pp. 1429-1440 ◽  
Author(s):  
Jason S Link ◽  
Jon K.T Brodziak ◽  
Steve F Edwards ◽  
William J Overholtz ◽  
David Mountain ◽  
...  

We examined a suite of abiotic, biotic, and human metrics for the northeast U.S. continental shelf ecosystem at the aggregate, community, and system level (>30 different metrics) over three decades. Our primary goals were to describe ecosystem status, to improve understanding of the relationships between key ecosystem processes, and to evaluate potential reference points for ecosystem-based fisheries management (EBFM). To this end, empirical indicators of ecosystem status were examined and standard multivariate statistical methods were applied to describe changes in the system. We found that (i) a suite of metrics is required to accurately characterize ecosystem status and, conversely, that focusing on a few metrics may be misleading; (ii) assessment of ecosystem status is feasible for marine ecosystems; (iii) multivariate points of reference can be determined for EBFM; and (iv) the concept of reference directions could provide an ecosystem level analog to single-species reference points.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Massimiliano Drago ◽  
Marco Signaroli ◽  
Meica Valdivia ◽  
Enrique M. González ◽  
Asunción Borrell ◽  
...  

AbstractUnderstanding the trophic niches of marine apex predators is necessary to understand interactions between species and to achieve sustainable, ecosystem-based fisheries management. Here, we review the stable carbon and nitrogen isotope ratios for biting marine mammals inhabiting the Atlantic Ocean to test the hypothesis that the relative position of each species within the isospace is rather invariant and that common and predictable patterns of resource partitioning exists because of constrains imposed by body size and skull morphology. Furthermore, we analyze in detail two species-rich communities to test the hypotheses that marine mammals are gape limited and that trophic position increases with gape size. The isotopic niches of species were highly consistent across regions and the topology of the community within the isospace was well conserved across the Atlantic Ocean. Furthermore, pinnipeds exhibited a much lower diversity of isotopic niches than odontocetes. Results also revealed body size as a poor predictor of the isotopic niche, a modest role of skull morphology in determining it, no evidence of gape limitation and little overlap in the isotopic niche of sympatric species. The overall evidence suggests limited trophic flexibility for most species and low ecological redundancy, which should be considered for ecosystem-based fisheries management.


2019 ◽  
Vol 209 ◽  
pp. 117-128 ◽  
Author(s):  
John G. Pope ◽  
Troels Jacob Hegland ◽  
Marta Ballesteros ◽  
Kåre Nolde Nielsen ◽  
Mika Rahikainen

2010 ◽  
Vol 107 (21) ◽  
pp. 9485-9489 ◽  
Author(s):  
S. Zhou ◽  
A. D. M. Smith ◽  
A. E. Punt ◽  
A. J. Richardson ◽  
M. Gibbs ◽  
...  

2020 ◽  
Vol 656 ◽  
pp. 75-87
Author(s):  
KM Depot ◽  
LC Scopel ◽  
SW Kress ◽  
P Shannon ◽  
AW Diamond ◽  
...  

Ecosystem-based fisheries management, which considers the interactions between fisheries, target species, and the physical and biological components of ecosystems, is necessary to ensure that directed fisheries avoid adverse impacts to ecosystems over the long term. The successful implementation of ecosystem-based fisheries management requires an understanding of predator-prey relationships and ways to operationalize such relationships to inform fisheries management. Here, we investigated if the diet of a generalist predator, Atlantic puffin Fratercula arctica, can be used as an indicator of the abundance of 2 commercially exploited prey species (haddock Melanogrammus aeglefinus and Acadian redfish Sebastes fasciatus) in the Gulf of Maine. Because haddock and redfish eaten by puffins are juveniles (age 0), there is potential to use their proportions and lengths in puffin diet to better understand the processes influencing haddock and redfish recruitment. By using principal component analysis to develop measures of diet across multiple puffin colonies, we show both spatial variation and large-scale patterns in the proportions and lengths of haddock and redfish in puffin diet. Spawning stock biomass was a strong predictor of haddock proportion in puffin diet and a moderate predictor of redfish proportion; however, proportions in puffin diet did not predict age-1 recruitment, suggesting that variation in recruitment is caused by processes that occur after the puffin breeding season and which affect the survival of older juveniles. Haddock length on one colony was a moderate predictor of age-1 recruitment. We conclude that puffin diet can be used as an indicator of haddock and redfish abundance.


Sign in / Sign up

Export Citation Format

Share Document